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Abstract

The evolutionary decrease in the size of an individual semiconducto de-
vice continues with no apparent end of the process in sight. As a conse-
quence, it is quite likely that critical dimensions will soon be comparable
to quantum coherence lengths for the particles involved in the transport
within the device. Generally, quantum transport differs from semi-classical
transport in the utilization of a quantum kinetic equation (as opposed to
the Boltzmann transport equation). These quantum kinetic equations can
be developed for the density matrix, the Wigner distribution function, and
real-time Green's functions, as well as for many reduced approximations to
these quantities. In this review, we study how these various approaches are
connected as well as how they offer different views into the quantum behavior
within devices. Considerable attention is given to tunneling heterostructures
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and the resonant-tunneling diode, as well as to the quantum dot structure,
which is the single-electron limit of latter device. An attempt is made to also
identify those areas which warrant further investigation as well as to review
what has been accomplished in the field.
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I. Introduction

Since the introduction of integrated circuits, the number of individual
transistors on a single chip has doubled approximately every three years.
Today, we are looking at multi-megabit dynamic random access memories
(the 16 Mb is on the market, the 64 Mb is in preproduction and commercial
sales are expected in 1995, and the 256 Mb has already appeared in research
versions). Comparable densities of transistors, our prototypical semiconduc-
tor device, are achieved in dense signal-processing chips, and microprocessors
are only slightly less dense. The annual progression of the increase of device
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density has followed a well-developed set of scaling laws for at least the last
two decades,'" 2 and there is no indication of any deviation from this scaled
progression for the next decade or so. At the rate of progress of dynamic
memory, we can expect to reach chip densities of 10' devices by 2001. By the
year 2020, we may well have memory chips with a density of 1 terabit, provid-
ing a number of interconnection and architectural problems can be overcome.
Terabit memory chips imply a quite small transistor, and in fact, the scal-
ing rules mentioned above imply a certain reduction of design rule (which is
reflected in gate length and metal line width). The reduction commensurate
with the present growth of integration density is approximately a factor of
1.4 in gate length for each new device generation (which produces only an
increase of 2x in density, the remainder coming from circuit enhancements
and larger chip size). This means that we will be using 0.1 - 0.15 pm d&sign
rules for the 4 Gb chips around 2005. If we continue this extrapolation, cur-
rent technology will dictate reduction to 30 nm design rules, and a cell size
below 103 nm 2, for the 1 terabit memory.

Whether or not the above scaling rules continue to hold, it appears that we
will eventually see devices with gate lengths of 50 nm and below as part of real
integrated circuits. An electron traveling at the saturated velocity (of most
semiconductors) will traverse this length in about 0.5 ps, or approximately
the time duration of the transient response of an electron to an instanteously
applied electric field of 50 kV/cm. Moreover, the inelastic mean free path (the
distance over which the carriers travel between energy dissipating scattering
processes, or over which they lose quantum mechanical phase information)
is about 0.1 pAm (slightly smaller in Si). This is greater than the gate length
expected in these small devices. Thus, it is expected that quantum effects
will become quite significant in the operation of such devices.

While very few laboratories have made research devices on a 0.1 pm
scale, there is evidence from ultra-submicron devices that have been made
that quantum effects will be important. Silicon MOSFETs (metal-oxide-
semiconductor field-effect transistors) have been made with gaite lengths as
short as 60-70 nm.3' 4 GaAs Schottky-gate FETs with gates as short as 30
nm 7-7 and high-electron mobility transistors with gate lengths as short as
20 nms'9 have been made. In the shortest of these research devices, there is
clear evidence that tunneling, a quantum mechanical effect, through the gate
depletion barrier is the dominant contributor to the current control, which



much reduces the gate control of the current."0

The transport of carriers in semiconductor devices has long been a subject
of much interest, not only for material evaluation, but also in the realm of
device modeling and, more importantly, as an illuminating tool for delving
into the physics governing the interaction of electrons (and/or holes) with
their environment.1 1 Moreover, the careful modeling of transport and inter-
actions in devices allows one to push the technology to ever smaller devices
successfully, accounting for new effects arising from the smaller sizes.4

From the above discussion, it appears that more detailed modeling of
quantum contributions needs to be included in device modeling for future
ultra-small devices. 12 These quantum effects appear in many guises: a) mod-
ification of the statistical thermodynamics within the device (and in its con-
nection to the external world), b) introduction of new length scales, c) bal-
listic transport and quantum interference, and d) new fluctuations affecting
device performance. Many of these effects already have been studied, either
in models of ultra-submicron devices or in macroscopic devices at low tem-
peratures (which, more appropriately, may be referred to as structures, since
they may well not be true devices in the normal sense). In this review, we
first will try to emphasize the nature of these differences and some of the
new effects and review what is known about them. Then, we will try to
put the approaehes to quantum transport for devices into context with each
other. Finally, we will review the manner in which each approach has been
used to model several prototypical quantum devices. We will not review the
entire field of mesoscopic devices, which have been studied extensively at low
temperatures, as these have been the subject of several excellent reviews in
recent years.13-15

1. Quantization in Devices

Today, for the greater part of device and circuit design, relatively simple
device and circuit models, equivalent circuits as it were, are used.16'This type
of approach has been integrated into VLSI design codes, and into microwave
use for discrete systems as well. In both cases, the results have been quite
good for today's devices. These equivalent circuit models are based largely
upon quite simplified transport analysis for the carriers within the device.
Nevertheless, many more quite sophisticated models of transport, universally
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based upon the Boltzmann equation, 11 are used to evaluate devices in the sub-
micron and ultra-submicron regime.17 The observations of velocity overshoot,
in which the transient dynamic response of the carriers becomes important
in the device performance, has been a primary driver for using the more
complicated, and more physically correct, transport models.10

In detailed modeling of semiconductor devices, ono normally couples a
more-or-less detailed transport model with a solution of the Poisson's equa-
tion for the specific struct'ire being modeled.1 s Quantization can appear in
either of these two basic parts of the device model. It has been known for
a great many years that carriers in the inversion layer of a Si MOSFET are
confined by the barrier between the semiconductor-oxide interface on one
side and the band bending of the conduction band on the other side. Since
the average thickness of the inversion layer is comparable to the de Broglie
wavelength of the electrons, this confinement is sufficient to produce quan-
tization in the direction normal to the oxide-semiconductor interface. 19 By
constraining the motion normal to this interface, the carrier motion is now
allowed only in the two directions parallel to the interface, and a quasi-two-
dimensional electron (or hole) gas is formed. In the case of Si, the six-fold
degenerate valleys of the conduction band are split, with the two valleys
having the heavy longitudinal mass normal to the interface lying lower in en-
ergy than the remaining four valleys having the light transverse mass normal
to the interface. This quantization is important in determining the num-
ber of carriers in the inversion layer, and appears as an extra contribution
to the gate capacitance-the peak of the wave function lies away from the
interface, near the center of the quantum well formed by the barriers on ei-
ther side, which is different from the classical case where the density peaks
at the oxide-semiconductor interface. This quantization is also seen in the
high-electron mobility transistor, or HEMT, 20 - 2 4 and is also important for
transport in quantum wells,25 and for the detailed screening of the carri-
ers in these structures. 26 Consequently, quite complicated simulation codes
have been developed to accurately determine the wave functions and charge
density self-consistently in the quantized inversion layer.27.2s

The transport of the carriers along the channel in the above-mentioned de-
vices is still usually treated by semi-classical techniques-primarily through
studies based upon the Boltzmann transport equation. In these approaches,
classical transport physics is used with the scattering processes calculated
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from quantum mechanical approaches, usually no more complicated than the
Fermi golden rule.11 However, the onset of quantum mechanical problems in
transport has been the subject of considerable discussion.1 2 In general, the
semi-classical approach assumes that the scattering processes are perturba-
tions distinct from those of the driving fields, that the scattering occurs
instanteously in both space and time, and that potential and density gradi-
ents are slow on the icale of the de Broglie wavelength of the carriers.29 In
future ultra-submicron semiconductor devices, all of these assumptions can
be expected to be violated. Some work has already appeared concerning the
interaction of the driving fields and the scattering processes, an effect known
as the intra-collisional field effect (ICFE).M-34 The problem of the rapid
spatial variation of the potential is of course what leads to the quantization
effects in the first place,35 and the multiple interactions this causes is the
major problem to be addressed in this review. The transition between semi-
classical dynamics and quantum dynamics is one that remains in question in
basic quantum theory,se but quantum transport has been discussed for some
time. One aspect of this is that the basic equations are Markovian in nature,
but under the conditions in which a one-electron distribution function is used,
these can become non-Markovian in nature due to memory effects introduced
by the scattering. Under strong fields and scattering, a new non-perturbative
basis of electron states, rather than a simple perturbation of the Boltzmann
equation, needs to be used.3 ' To be sure, this problem-the steady-state of
the far-from-equilibrium system under high fields-is not new, and appears
equally as well in the semi-classical transport problem. The first to suggest
this new dissipative steady-state was different was Landauer.m It was pur-
sued extensively by the Brussels group,39 but the major point above is that
the transition from semi-classical to quantum dynamics is also not a simple
perturbative process. It is these major differences that create much of the
problem in trying to develop quantum mechanical treatments of the transport
for strongly non-equilibrium systems such as occur in semiconductor devices.

2. The Differences from Boltzmann Transport

The basic transport equation for studying carrier behavior in semi-classical
models of semiconductor devices has been the Boltzmann transport equation:
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Of + ef + .L [S(p, p')f(p') - S(p', p)f(p)] (1)
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where p = my is the momentum, and r is the position. Here, it is as-
sumed that the momentum is related to the energy of the particles by a well-
defined single-electron band structure; e.g., the spectral density is defined by
A(E,p) = 6(E - 9/2m) (the spectral density is related to the dispersion
relation between energy and momentum; integration over the vector momen-
tum produces the density of states). Moreover, it is also assumed that the
effect of the potential arises solely from the value of the first derivative, the
field F in (1). Finally, it is assumed that the distribution function f(p, t)
varies slowly on the temporal scale of the relaxation processes, in that it is
the local distribution at time t that appears in (1) and not some retarded
value of the distribution (which one would assume would be the distribution
at the time the appropriate free path began). There are then two approaches
to solving this equation to obtain transport coefficients:

"* It is assumed that the variation of the distribution from the equilib-
rium Maxwell-Boltzmann one (nondegenerate statistics are assumed)
is small, and the value of f in the derivatives is replaced by the equilib-
rium vplue. This leads to what is usually referred to as the relaxation-
time approximation.

"• For complicated, anisotropic scattering processes, or for high-field trans-
port, the above approximation fails, and one must actually solve for the
distribution function. This, in fact, is the major problem in hot carrier
transport.

In the case of quantum transport, each of the above assumptions fails. In
particular, the spectral density is no longer a simple delta function, and one
must find its form in the interacting system of many electrons with scattering
by impurities, phonons, and other electrons. At low temperatures, and near
equilibrium, the spectral function is usually found to be a Lorentzian, in
which broadening exists around the value specified for the energy-momentum
relation of the semi-classical model. In addition, the potential leads to non-
local behavior, in which the last term on the left-hand side of (1) includes
an entire heirachy of derivatives, such as originally introduced by Wigner. 40
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Finally, the collisions are no longer localized in space and time, so that the
collision integral on the right-hand side of (1) becomes a non-Markovian
retardation integral. This leads to a modified heirarchy of solutions for the
quantum distribution function:

"* The spectral function must first be determined in the interacting sys-
tem.

"* For near-equilibrium systems, or at low temperatures, it may be as-
sumed that the quantum distribution is given by small deviations from
the equilibrium Fermi-Dirac distribution.

"* For complicated, anisotropic scattering processes, or for high-field and
strongly non-equilibrium transport, the above approximation fails, and
one must actually solve for the distribution function.

To be sure, in some approaches this sequence is finessed by using single-
time functions, such as the density matrix and the Wigner distribution func-
tion, which essentially integrate out the spectral function, but retain the
full spatially non-local nature of the potential interactions that lead to the
heirarchy of derivatives appearing in the transport equation which replaces
(1). We will illustrate this further below. Nevertheless, the transport prob-
lem, as in the semi-classical case, remains a balance between the driving
forces, primarily-the potential, and the relaxation forces represented in the
collision integral.41

In the quantum mechanical case, there has been an argument for some
time over whether or not the application of an electric field to a crystal
would destroy the bulk band structure and create a Stark ladder of discrete
states.4 2 In fact, it is known that this does not occur in bulk crystals, where
the use of the electric field creates a Franz-Keldysh shift of the bands, which
is quite useful in modulated electroreflectance to study the band structure.43

Some Stark ladder effects are seen in well correlated superlattice structures
under optical illumination, but, in general, the effects are washed out in bulk
materials by the scattering processes found there."

A. Statistical Thermodynamics and Quantum Potentials

As we discussed above, the potential in quantum systems creates actions
that are nonlocal to the actual potential, i.e., they can occur some distance
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from the potential. Let us consider how this nonlocality arises. Consider a
simple potential energy barrier (Fig. 1) V(z) = eVou(-x), where u(x) is the
Heavyside step function. We assume that a non-zero density exists in the
region x > 0, and the question is how the density varies near the barrier,
a quite typical problem in introductory quantum mechanics and in devices.
Here, however, the problem refers in general to a statistical mixed state,
rather than to a single quantum state. In classical mechanics (in the absence
of any self-consistent Poisson equation solutions to find a new, self-consistent
potential), the density varies as exp(-#V), where P is the inverse electron
temperature (= lkBT), and for this case is uniform and constant 0
the barrier, dropping abruptly to zero in the half-space, x < 0. I 'uantum
mechanics, however, the wave function is continuous, and or y member
of the statistical ensemble must be small at the interface (vanishingly small
for the case V. --+ co). This then leads to a different behavior on the part of
the density. In Fig. 1, we show the Wigner distribution function (which, for
the moment, can be thought of as the quantum statistical mechanical analog
of the classical phase-space distribution) for this situation. The parameters
here are appropriate to bulk GaAs, with n = 2 x 1017 cm-3. " We note that,
far from the barrier, the distribution approaches the classical Maxwellian
form, but near the barrier, the distribution differs greatly from the uniform
classical case. The repulsion of density from the barrier is required by the
vanishing of the wave function at the barrier, but the first peak in the wave
function away from the barrier occurs closer to the barrier for higher momen-
tum states. This leads to much of the complication evident in the figure, and
to a momentum-dependent positional correction to the density away from
the potential barrier. The density peak away from the barrier is governed
by physics similar to the peak in density away from the semiconductor-oxide
interface in a MOSFET, and assures that net charge neutrality is maintained
(which means that Poisson's equation is included in the solution). The devi-
ation in the density occurs over several thermal de broglie wavelengths (eval-
uated with the thermal momentum) AD = V 12/3mkBT. This suggests that
nonlocal deviations from classical results can be expected to occur in most
semiconductor devices over a range of 20-40 nm even at room temperature!

It is clear that the density no longer varies simply as exp(-fiV), and
that modifications to the statistical mechanics need to be made. The devel-
opment of quantum corrections to statistical thermodynamics, especially in
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equilibrium, has a rich and relatively old history. Unfortunately, there is no
consensus as to the form of the correction to this simple exponential behavior.
If we could find such a correction, it could be utilized in the semi-classical
hydrodynamic equations developed from moments of more basic transport
equations such as (1).

One of the original efforts to obtain quantum corrections to classical dis-
tribution functions was done by Wigner, in introducing the Wigner distribu-
tion function.4 ° In this regard, it can be considered as an attempt to find an
additional term that can be added to the classical potential to produce the
desired results. The Wigner potential has been put in the form4 6

hl a2(ln-n .)UW 8m (In * (2)

This represents a quantum correction to the mean kinetic energy of a dis-
tribution of particles. Bohm4' also introduced an effective potential, in his
discussions. For a distribution of particles, in the single-electron approxima-
tion, the Bohm potential represents a non-electrostatic force, acting upon a
particle distribution whose value is determined by the form of, the particle
distribution. In a sense, this potenial is determined through an interaction of
the particle with itself quantum mechanically. The Bohm potential is given
by

= 1h2 L2 V/'(ums= 2 vr ox (3)

These two differ numerically only in a minor way, even though their concep-
tual origins are quite different.

Feynman and Hibbs48 suggested a variational approach by which the clas-
sical potential would be weighted by a Gaussian spreading function. Later
work by Feynman and Kleinert 49 extended this to the development of a gen-
eral variational form for the effective potential, in which a nonlocal smoothing
function is applied to the actual potential, and new terms arise to* represent
quantum diffusion. A new version, based upon a Green's function solution of
the effective Bloch equation for the density matrix in the nonlocal potential
has been developed, but untried in actual device simulations.5 0 This will be
discussed further below.
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It must be emphasized that the variation of the wave functions, or the con-
sequent quantum distribution functions, away from confining barriers leads
to quantization within a small system. This quantization is the over-riding
property of small systems, such as quantum wires and quantum boxes.51 In
some cases, the narrow minibands that result from this quantization have
been suggested as a method of cutting down on phonon scattering, by insur-
ing that the width of a miniband is small compared to the optical phonon
energy, while the spacing of the minibands is larger than this energy.52 Most
devices, however, are (erroneously) thought to be unconstrained in the di-
rection to/from the contacts (or the reservoirs, as they will often be called
below), so that these effects are not likely to be observed in most realistic
devices. In fact, determining the contact effects in these "open" systems will
be quite complicated, a point to which we return below.

B. Phase Interference

While current devices have gate lengths in the 0.25-0.7 lim range, at
least for production devices (the shorter ones are GaAs microwave devices),
future devices will reach far smaller sizes. It is conceivable that the gate
length will then be comparable to those in which quantum effects are studied.
The relevant quantity for discussion of quantum interference effects is the
phase change of the carrier as it moves through the semiconductor device.
Interference between differing electron waves, or differing electrons on their
individual trajectories, can occur over distances on the order of the coherence
length of the carrier wave, and this latter distance is generally taken to
be the inelastic mean free path, or phase breaking length. Ballistic, and
therefore coherent and unscattered, transport has been observed through
the base region of a GaAs/A1GaAs hot electron transistor.5 3 From this, it
is estimated that the inelastic mean free path for electrons in GaAs may be
as much as 0.12 lm at room temperature. The phase-breaking length, or
inelastic mean free path, is of the order of (and usually equal to) the energy
relaxation length 1e = vT, where rT is the energy relaxation time and v is
a characteristic velocity. This tells us that even in Si the electron inelastic
mean free path may be 50-100 nm. Thus, the inelastic mean free path can be
quite long, and can be comparable to the gate length in these devices. Since
the phase remains coherent over the range of the correlation function of the
electrons (in space or time), there can be interference effects in the overall
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conductance of the device. The small device will then reflect the intimate
details of the impurity distribution in the particular device, and macroscopic
variations can then arise from one device to another, an effect well known
in mesoscopic devices, where it leads to nonlinearities and fluctuations.s4
The basic concepts were expressed rather early by Landauer,"5 in which the
conductance through a region with localized scatterers was expressed by very
sample specific properties, known as the Landauer formula

2e2 _
G 2- 2-T. (4)

h
Here, the formula is expressed for one dimension, but it can be expanded
to more dimensions by interpreting T as the total transmission of all modes
(electrons) through the region of interest. In this formula, the potentials, used
to calculate the conductance, are determined at the reservoirs (or contacts).
While the original formula was obtained for noninteracting electrons, recent
work has shown that a similar, but more complicated, form is obtained in
the interacting electron case."

The most usual study of the sample specific variations of the conductance
with gate bias, applied bias, or magnetic field, all of which provide fluctu-
ations in the local potential in the inhomogeneous sample (and all samples
are inhomogeneous in this phase coherent regime), has dealt with universal
conductance fluctuitions.15 However, it is also possible to have a net coherent
backscattering from the impurities, without losing the phase coherence, and
this leads to the concept of weak localization, a form of increased resistance
due to the interactions.1 5 .5 7 One additional effect which has been suggested,
but not studied well, is the fact that the random impurities cause a significant
deviation in the current density from the uniform (average) value, especially
where the cross-section of a single scatterer exceeds that of its equivalent
volume of background semiconductor. Then, any single scatterer is likely to
affect a greater current, due to the detour of current lines away from other
scatterers. This can lead to a greater effect of each scatterer and, hence, a
larger contribution to the resistance of the device.58

The above effect reaches its pinacle in the presence of a magnetic field,
which can be coupled through the two phase coherent paths, and which leads
to the Aharonov-Bohm effect. 59 The effect is most commonly studied in metal
loops, coupled to a pair of reservoirs.-6-64 However, anytime two mutually
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uncorrelated quantum channels are connected at the reservoirs, one must
expect that there will be flux sensitive fluctuations of the conductance.-° 70

One can ask the question as to whether the presence of inelastic scattering in
one or both arms of the loop will cause these oscillations to be damped, and
the answer is generally in the positive. The study of this damping effect led to
the general development of the multi-channel version of (4).71 Nevertheless,
the presence of many channels of transport through the active gate •ion can
be expected to lead to relatively large fluctuations in the overall conductance,
if the conditions are properly attained.

Each of these effects is likely to begin to impact devices, as the size is re-
duced, even at room temperature. The most likely is universal conductance
fluctuations, especially in the turn-on characteristics of the device, where the
conductance is low and the impurities are being charged/discharged. " a-
sider a small device, perhaps with a gate length and width of 0.05 x 0.1 P.n,
respectively. If the number of carriers in the inversion channel is 2 x 1012

cm-2, there are only 100 electrons under the gate. If there is a fluctuation of
a single impurity (between ionized and neutral), one might expect a change
of conductance of order 1% in the thermally averaged classical regime. The
change can be much larger if the carriers are phase coherent. The phase
coherence72 and the charging of such single impurities has been detected at
low temperature in Si MOSFETs.73 It is clearly established now that the
effect can be much larger than one would expect, and this largeness is due
to the quantum interference caused by the change in trajectories of individ-
ual electrons. The conductance change in the phase interference process can
be of the order of (4), which is about 40 pS. If our device were to exhibit
outstanding conductance of 1000 mS/mm (of gate width), the absolute con-
ductance would only be 100 gS, so that the fluctuation could be of the order
of 40% of the absolute conductance! This is a very significant fluctuation,
and arises from the lack of ensemble averaging of these effects in the phase
coherent transport through the device. It may well be a limitation in the
performance of such devices.

In fact, our 0.1 pm gate width device is quite nearly a device formed on
a quantum wire, since the width is also comparable to the inelastic mean
free path of the carriers. Thus, as the gate potential is varied, one may
well expect to see (even at room temperature) conductance fluctuations aris-
ing from the effects discussed above, as well as other quantum interference

15



effects in the device. These conductance fluctuations appear as noise, but
are not temporal variations-they arise in d.c. measurements and are quite
repeatable. Such fluctuations, and their effects on device performance and
behavior, can only be modeled with full quantum mechanical transport, and
electrostatic, models.

3. Open Systems and Contacts

The implications of (4) are that the conductance of a localized tunneling
(or scattering) barrier can be calculated from its transmissive behavior be-
tween two reservoirs.74 If there are reservoirs on the left and right-hand sides
of the transmissive region, which may be considered for the present as the
device, it may be assumed that the system is in steady-state thermodynamic
equilibrium deep .within the reservoirs. The device resistance is then com-
posed of the active region and the contacts, which connect the latter to the
reservoirs. In a quantum mechanical sense, this is represented by the incident
and out-going wave functions, their occupation probabilities, as well as the
multi-dimensional transport through the system, and the included inelastic
processes. Nevertheless, it is still possible, in principle, to calculate the trans-
missivity between the incident wave functions and output wave functions in
the exit reservoir. Even if the transmission through the active region is to-
tally elastic (the ballistic transport of the next paragraph), dissipation and
ultimately irreversibility occurs through relaxation in the exit reservoir and
the contact region adjacent to it. While physics normally considers closed
systems, it is the macroscopic open system with its contacts, and reservoirs
that are important to the consideration of devices.7" Indeed, simulations of
electron wave packet transport through quantum wires are sensitive to the
details of the treatment of the reservoirs, 76 a result that is also known for
studies of weak localization and universal conductance fluctuations in meso-
scopic devices.7 7

This becomes more important in devices, as the problems of devices in-
trinsically involve open systems. As illustrated in Fig. 2, carriers within
the device are interacting with a reservoir at each end. The electrons or
holes in these reservoirs have been characterized as either satisfying a Boltz-
mann or Fermi distribution, in equilibrium, or as a displaced distribution in
a nonequilibrium state of bias. Such a characterization implies that a local
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equilibrium exists in the "contact" and is fraught with all of the uncertainties
associated with this characterization. It will be quite necessary to discover
just how the characterization of the reservoirs, or contacts, actually impacts
the simulations of the devices. We will see in the simulations in the following
sections, that the boundaries and contacts play a very essential role, a role
that is well known in the semi-classical world.

A. Ballistic Transport

The idea of a quantum trajectory, which resembles the classical phase
space trajectory, dates to the early ideas of de Broglie and his pilot waves.
It was resurrected by Bohm 47 to explain considerable detail of his wave ap-
proach. Nevertheless, it has been difficult to incorporate these trajectory
ideas within quantum mechanics, since the probabilistic interpretation of the
wave function tends toward the lack of a well-defined single trajectory for
the wave packet. This is reflected in the summation over probabilistically
weighted trajectories in path integrals.•s Nevertheless, there is a consistent
interpretation of quantum mechanics using trajectories as its basis.78 This
becomes important when we want to talk about ballistic transport of carri-
ers from one contact reservoir to another. If the distance between the two
reservoirs is less than the elastic mean free path, then carriers injected into
the active region from one reservoir will drift under the applied fields to the
other reservoir. It is not convenient to think about this motion in any other
manner than as the transport of the centroid of the carrier wave packet along
a semi-classical trajectory. Indeed, ballistic transport theory may be set up
by choosing the appropriate fields to accelerate the carriers through the de-
vice; the problem becomes completely non-trivial if the fields are computed
in a fully self-consistent manner.35 The principles behind the Landauer equa-
tion (4) are not dependent upon this view, as one may define the channels
by various modes of a waveguide, but it is often convenient to think of the
Landauer equation in this fashion. We will see this further below, in connec-
tion with transport in high magnetic fields. In general, the natute of ballistic
transport goes beyond structures whose lengths are less than the elastic mean
free path. Rather, the important length over which the transport is essen-
tially ballistic is the inelastic mean free path, or phase breaking length. That
is, the important length is that over which the transport remains coherent.
This was demonstrated by Bfittiker,7 9 who showed that transport through
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two series-connected phase-coherent regions produced the normal additiv-
ity of resistances only if an inelastic scattering process occured between the
two regions. In the absence of this inelastic process, coherent addition of
the two regions resulted. Surprizingly, if the overall transmission probability
were low, then the addition of weak inelastic processes actually lowered the
overall resistance, but the classical additivity of resistance' was recovered
as the degree of inelastic scattering was increased. It is thought that this
initial lowering results from resonant transmission through the scatter, and
this resonance produced higher transmission, as this effect did not occur for
transmission probabilities of the order of 0.5.

The study of ballistic transport in quantum waveguide structures, in
which a coherent structure supporting only a few occupied channels (a chan-
nel is one mode of transverse quantization) was placed between two reser-
voirs, has been pursued by a number of authors. One reason for this, is that
the modification of (4) for the case of multiple modes has been somewhat
controversial. To be sure, the overall conductivity is related to the overall
transmission matrix of the multi-mode structure.se Yet the number of probes
(side-arms are often added as voltage contacts, while the reservoirs serve as
current contacts) affects the resultant formulae in many cases, and the re-
sult of reversing the magnetic field in a multi-probe measurement must yield
the proper symnetries, consistent with the Onsager relations.81 Indeed, if we
have a four-terminal structure, with terminals 1 and 2 being used to provide
the source and sink of current, and terminals 3 and 4 being used to measure
the voltage, then (4) can be generalized to

h 1 T31T42 - T32T41= 2e2 T (T31 + T32)(T41 + T42) (5)

and T = T12 = T21. Clearly, if the last fraction is ignored, then (4) is recov-
ered.

There are caveats to these equations as well. The "ballistic leads," e.g.
the regions between the reservoir/contacts and the active region of measure-
ment, must be connected in a nonreflective manner with the reservoirs, and
the electro-chemical potentials must be measured deep in the reservoirs to
assure thermalization of the carriers. If this geometry is not respected, then
deviations can occur in measurements, and even in some theories, and this is
important to considerations of potentials.8 2 Consequently, the study of the
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existence of the proper transmission formula and resonances in the transmis-
sion under certain condilions, continues to be a topic of some discussion.as
In addition, considerable effort is now being expended on the study of the
high frequency forms of the conductance of these ballistic structures,4 as
well as the effect that bends in the ballistic structure play in the overall
conductance.s"

One of the most interesting aspects of the Landauer equation is the re-
sulting experimental observation of quantized conductance through a con-
striction which could be varied by the gate voltage. Indeed, steps in the
conductance were found in exact agreement with (4), as the measurements
were essentially a two-terminal measurement.s6,s7 However, the most exten-
sive study of the multi-terminal version (5) has been in the quantum Hall
effect.ss In the presence of a high magnetic field, scattering of the carriers
is suppressed as the ballistic trajectories are folded into Landau orbits, in
which the essentially one-dimensional transport along the orbit hinders the
scattering process." Only those trajectories which reflect from the lateral
boundaries move from one contact to another; these edge-located carriers
are essentially what are now called edge states.s°-92 In a great many studies,
which are not the central point of this review, the multi-terminal version (5)
has now been verified. It should also be pointed out that, although (4) and
(5) are basically obtained for non-interacting electrons, the results are not
significantly'affected by the presence of carrier-carrier interactions.93,94

While nearly all of the above ballistic electron studies have been carried
out at low temperature, the basic nature of ballistic transport carries through
from the semi-classical regime, and supports the basic trajectory nature of
the transport of carriers, even in the quantum regime. This is likely to be
an important consequence for the small semiconductor devices, in which we
envision a need to include detailed quantum transport models. The ballistic
transport provides one limit of the transport process and must be reflected
in accurate models.

B. Role of the Boundaries and Contacts

One of the important consequences from (5) is that the actual resistance,
or conductance, that is measured is dependent upon the details of the probes
that are connected to the conducting channel. That is, it specifically depends
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upon whether there are two or four probes, or the details about how well the
probes absorb or reflect incoming ballistic trajectories. In general, there are
a large number of possible measurement probe geometries, and each delivers
different possible overall conductances.9" In short, one way of looking at
this problem is that there is a variability in the possible voltages measured,
for a given current, and it is important to know just where in space the
voltage measurements are made. A slightly different view of this is that
any particular (and certainly small) device is actually embedded within its
environment. The boundary effects play an essential role in determining the
physical properties of semiconductor quantum wires." The performance of
the device is not usually separable from its environment, and the environment
can in fact completely determine the performance of the device. 12 Specific
studies, with regard e.g. to resonant tunneling diodes clearly show this is
the case,9 a point that we will continue to see in the simulations discussed
in later chapters.

The role of the interaction between the contacts (or probes or reservoirs,
as the case may be) and the device can be significant. Indeed, it is actually
possible for scatterers near the contact. to induce oscillations in the electro-
chemical potential,9 which further complicates the contact potential drop.
The importance of the contacts and probes is best exemplified in the case
of the quantum.Hall effect."-100 Since the edge states are the penultimate
ballistic (and non-dissipative) channel, the entire conductance and voltage
distribution depends upon the details of the current and potential probes.
The nature of this interaction can in fact be studied by varying the con-
finement potential to study the transition from local (classical) to non-local,
ballistic transport.10'

The idea of environment must be extended beyond just the concepts of
probes and contacts. Indeed, it is the entire environment of a particular de-
vice that can lead to changes of device behavior. The presence of continuous
devices opens the door to transfer between such devices, which has been es-
pecially studied in coupled quantum wires.1°2 Another important scattering
process, in addition to internal scatterers within the device, is interaction
with the interface modes of the lattice.103 In fact, in many cases the scat-
tering from remote and interface modes may be more likely than scattering
within the active device region, simply because of the fraction of phase space
sampled by any particle wave function inside the device may be smaller than
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that part outside. This is also true for the surface, which may have extensive
influence on the nature of the wave packets." 4 We will examine the specific
formulation that leads to the detailing of the device-environment interaction
in a great deal more depth later.

4. Some Potentially Important Quantum Devices

It has already been pointed out above that the normal Si MOSFET ac-
tually incorporates quantization within the channel, in the direction normal
to the interface between the oxide and the Si inversion layer. Such quan-
tization also appears in the GaAs/AlGaAs high-electron-mobility transistor
(HEMT), in a similar fashion. Carriers are created by dopants placed in the
AlGaAs, and these carriers transfer into the GaAs to create an accumula-
tion layer on the GaAs side of the heterojunction interface. In both cases,
the inversion/accumulation layers are created in a self-consistent potential
with the actual size (thickness) of the layer being larger than the classical
width due to the wave function of the carriers. This leads to a number of
observable quantum effects in these devices, but which occur mostly at low
temperatures. Moreover, much of these effects are only of second order in
the transport properties. Nevertheless, full understanding of the ultra-small
device will require a more advanced quantum transport treatment. As was
also mentioded above, one of the most obvious quantum effects that can
occur in the transport for ultra-short gate lengt. is is tunneling through the
gate depletion region, and study of this effect is impossible in a classical
treatment.

Tunneling is a fully quantum mechanical process in which a carrier pene-
trates into and traverses a barrier region, where the amplitude of the barrier
exceeds the kinetic energy of the carrier. It first became of interest in semi-
conductors in highly-doped p - n junctions, where the conduction band on
the n-type side lay below the valence band edge on the p-type side (so-called
degenerately'doped junctions),Y0s The theory of such interband tunneling,
which can also occur in semiconductors under very high electric fields (where
it is often referred to as Zener tunneling) has been worked out over many
decades, and has been reviewed extensively."s- 1 0 Even with a long history
of work, there remain questions about the details of real tunneling processes
in the presence of dissipative mechanisms,1 0,'110 and the tunneling time, the
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physical time required for a carrier to move from one side of the tunneling
barrier to the other, remains quite controversial."' Tunneling is also the basis
of the scanning tunneling microscope, 112 a new method of studying surfaces
with atomic resolution. Nevertheless, the key device of interest at present is
the resonant-tunneling diode.

A. The Resonant-Tunneling Diode

The idea of using two tunneling barriers, within a single conduction (or va-
lence) band, is a relatively old idea. However, the concept of using band-gap
engineering with semiconductor heterojunctions to create realistic barriers
is only a few decades old,113 and such structures have dearly shown nega-
tive differential conductivity as soon as they were made.114 The basic idea is
shown in Fig. 3. The barriers are formed by thin layers of AlGaAs, and the
well and boundary layers are formed from GaAs. A quasi-bound state forms
in the well layer. With no applied bias the tunneling through the structure
is greatly reduced, as the tunneling length must extend over the entire width
of the three barrier and well layers. On the other hand, when an applied bias
is present, the anode layer and well layer are pulled to lower energies. When
the quantum well level becomes degenerate with the occupied conduction
band states in the emitter layer (Fig. 3b), current begins to flow through the
structure, since'there is now a resonant state available to the electrons, and
the tunneling distance is now just that of the first barrier. If the two barriers
were equal when the quantum level aligns with the emitter filled states, the
transmission coefficient would rise to unity. When further bias is applied,
so that the quantum level in the well drops below the conduction band edge
of the emitter, current no longer flows. Thus, current flows only for a finite
range of bias, and negative resistance is obtained on the high voltage side
of this region. 115 We return to this below, with a more detailed description
in each of the following sections, and include a discussion of non-resonant
tunneling as well.

More recently, the resonant-tunneling diode has found applications in
microwave circuits for amplification and oscillation.11 s Throughout the de-
velopment of the resonant-tunneling diode, there have been a number of con-
troversies. The first was whether the electrons tunneled completely through
the structure coherently (in one step) or sequentially (in two steps).11 7 In the
end, it turns out that the actual current seems to be independent of this,
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but the only certainly sequential processes involve scattering of the carri-
ers, especially when the scattering is inelastic, as has been determined by a
number of relatively simple calculations."11-1 21 The second controversy, and
perhaps more meaningful, was over the role of trapped charge in the quantum
well. For increasing bias, the quantum well has to be emptied as the current
shuts off.. When the bias is again reduced, the well must be charged to be-
gin the current. This suggests that there should be some hysterysis in the
current-voltage curve. 12 To really study this effect, one needs self-consistent
calculations for the current-voltage curve. Many of these have been carried
out, and will be discussed in the later sections of this paper. Nevertheless,
some more straight-forward approaches have also appeared; more straight-
forward only in the sense that they try not to get involved in the detailed
calculations of quantum transport.12,1 2 4

The resonant-tunneling diode is the "fruit-fly" for quantum transport
studies, since the classical description cannot provide any insight into the
process-the tunneling process -is the key ingredient. Thus, we will see it
treated again and again in the discussions below. In addition to the cur-
rent, charge within the well, and the overall device characteristics, interest
has focused recently on simple evaluations of the high-frequency conductiv-
ity and the noise. 12s."26 When the resonant-tunneling diode is also laterally
confined, 1 ,2s one gets a quantum dot (the laterally confined quantum well)
with quite a complicated level structure within the dot.

B. Quantum Dots

The creation of lateral patterning to create an isolated region in which
electrons (or holes) can be localized has led to considerable effort in the study
of quantum dots and the electronic structure in these dots.5 1,129 Usually, as
in solids, the energy structure is calculated for the one-electron states, but
the consideration of the carrier spin1 30,1 31 and multi-particle states has also
occured.132 The quantum dot is usually thought of a localized region defined
by gate potentials, as shown in Fig. 4, but it can actually be a waveguide
resonator attached to an electron (or hole) waveguide.13 The quantum dot is
an interesting mesoscopic structure in its own right, as it is a mini-Aharonov-
Bohm ring when edge states cycle through the structure, 13 and it can occur,
and be studied, in a variety of manners, not the least of which is by STM
probing.135 We now are beginning to see studies of various "interactions" in

23



the dot to specifically study its properties; e.g., recently Feng et alY'-" have
created an additional gate controlled region in the center of the dot so as to
act as an "impurity."

Obviously, the central quantum well of a resonant-tunneling diode also
plays the role of a quantum dot. In fact, many aspects of quantum dots
coupled to waveguides, or other probing regions, play much the same role
as the tunnding coupling. However, the quantum dots can also be coupled
capacitively, which is a classical interaction. Quantum dot effects begin to
occur when the capacitors coupling the central region to its environment
begin to be sufficiently small that the change in energy of the capacitor, when
one electron transits it, is larger than the thermal energy or any bias energy.
This is the so-called Coulomb blockade regime, and leads to the field of
single-electron tunneling (SET).1 '3 One advantage of the use of capacitively-
coupled dots is the ability to modulate the barriers and produce various
device-like effects through this gate modulation.-1s- 140 Others have reversed
this to use the oscillating barriers to actually study tunneling through these
barriers.14,142 Noise has also been suggested as a mechanism to study the
tunneling properties of the barriers themselves.143

For the purposes here, the quantum dot is another interesting variant of
the resonant-tunneling diode, and we will see several approaches to treat the
detailed transport through these devices. It should be pointed out, though,
that arrays of quantum dots form an interesting lateral surface superlattice,
which leads to a number of other interested new physical effects, particularly
in the magnetotransport. 144 Random arrays of the SET devices are a ma-
jor candidate for future logic applications in the ultra-small regime."3, 145 It

should also be pointed out that multiple quantum dots illustrate SET effects
even in Si MOS structures,14s a result that is expected from semi-classical
modeling.147

II. The Quantum Equations

Although there are different formulations of quantum mechanics, nearly
all approaches which lead to modeling of semiconductor devices derive from
the Schr6dinger equation

ih O- h2 a2- + V(x) (6)
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in one dimension (here taken to be x) so that %F = (x, t). It should be
noted that we have taken a particular form for the momentum, in that it is
assumed that the particle energy is quadratic in the momentum. In devices,
modeling usually proceeds from another formulation, which arises from (6),
as will be shown below. The form of (6) is dissipationless, since the poten-
tial is normally the applied or built-in electrostatic potential. Although other
forms are usually used, there has been work to actually apply the Schr6dinger
directly in simulations. For this, it must usually be assumed that the length
of the region being simulated is considerably smaller than any characteristic
dissipation length. Various characteristic lengths are important in the quan-
tum mechanical description of transport.-1 Of most interest are the elastic
mean free path, which describes a characteristic scattering length for elastic
processes which do not break the phase coherence or relax the energy, and
the inelastic mean free path, which describes processes which do break the
phase coherence. There can be processes which break phase coherence, but
do not relax the energy, although almost all energy relaxing processes break
the phase coherence. Processes which can break phase coherence without re-
laxing the energy can arise from elastic processes that are sufficiently strong
that they introduce localization. Th-,uless' 49 suggested that one should relate
the inelastic mean free path to the inelastic mean free time! as

o = (7)

where D is the carrier diffusion constant (it is assumed that the transport is
diffusive, which implies that it is not ballistic or that there is considerable
elastic scattering occuring within this length). Generally, it is still true that
there is not a parti.'-ularly good theoretical basis for calculating Lo as yet.148

Indeed, most estimates for its value are taken from experimental studies of
the material in a particular device configuration.1

The basic concepts of transport in mesoscopic systems in the presence of
localized scatterers can be traced to Landauer."5 It is now recognized that
slowly varying elastic potentials can lead to localization, and hence phase
breaking in the system.Ims°'5 More importantly, there is a wealth of work
now that clearly shows that the onset of inelastic scattering will suppress
many of the quantum effects that are of interest; e.g. quantum interference
effects.1 52 There are many techniques to now simulate this, even with the
Schr6dinger equation-10,154 Indeed, the role of scattering by large energy
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exchange processes, such as optical phonons, has clearly been demonstrated
in studies of the DBRTD. 8 "- 120,155 -1 57

The treatment of transport with the Schrddinger equation has followed
several approaches. In one case, the scattering matrix formulation utilized
by Biittiker84 has been used to study simple waveguides in which elastic scat-
terers have been imbedded.'-' Here, a new concept has been introduced, and
that is that the wave nature of the electron can be used to treat the transport
of the electron as a guided wave problem,7 4 just as in the case of microwave
waveguides. The approach here uses (4) with the total transmission defined
as

T =Z T,, (8)
n,m

"wvhere T.n is the transmission from mode m of the input to mode n of the
output contact. To develop this, it is usually assumed that the waveguide is
created in an otherwise quasi-two-dimensional electron gas. The experimen-
tal waveguide itself can be defined either by physically creating a waveguide
region by reactive-ion etching or by defining it electrostatically with lateral
gates.'3 Then it is possible to write Schr~dinger's equation in two dimensions
as (time independent, however)

h2 ( a2 .02
ýM + +2 (9)

with
V(X, y) = V.(y) + V-•(X, y), (10)

and the first term on the right-hand side is the confinement potential defining
the lateral extent of the waveguide while the last term is any applied potential
describing bias or impurities, etc. The general solution of the wave function in
any small region (these regions are then connected together1 59) over which the
lateral confinement potential is constant (which means that the waveguide
has uniform properties) is given by

1P(x,Y) = • n(x)(Y), (11)
n

where, in general,
F2 n~ry

Xn(Y)= Wsin(--) (12)
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for hard-wall confinement of the waveguide (in hard wall cases, it is usu-
ally assumed the wave function vanishes at the confinement wall). Other
approaches sometimes use soft walls with quadratic potentials in which the
lateral modes are described by harmonic oscillator wave functions.

The longitudinal modes are described, in general, by a combination of
forward and backward propagating plane waves, as

, ae"% +- bne- , (13)

where -y. is the propagation constant. If the mode is a propagating mode,
then -y,, = ik, and describes the wave nature of the mode. If, on the other
hand, the mode is evanescent, then "-, is a real quantity describing the de-
cay of the mode. It is very important to note that proper inclusion of the
evanescent modes is very important in studying- waveguide discontinuities by
this method, just as it is in microwave waveguides. At the interface between
two regions, in each of which the mode properties are uniform, the total
wave function and its derivative are matched across the interface (note that
if there is an appliA potential at the interface site, the normal derivative is
discontinuous by an amount determined by this potential1e°). This approach
has been usL ..o study the role of rounded corners at crossing waveguides,16

waveguide stub" - and the ef.'ct f impurities in the stub region,163,6'4 as
well as other, config'-rations ment, ined below.

One particularly interesting application is the study of a waveguide with
a double constriction. That is, two narrow waveguides are sep,..ated by a
wide region, and contacted with wider reservoirs on the ends, as shown in
Fig. 5(a).16',166 This structure is the waveguide equivalent of the DBRTD
described previously. Modes are allowed in the wide central region which are
below cutoff in the constricted regions, and this allows for tunneling into the
central region, if the constrictions are sufficiently short, and consequently a
negative-differential conductance can be obtained in the structure. In Fig.
5(b), the overall transmission probability is shown for such a structure as the
energy of the incident wave is varied. This may be used in a. conventional
tunneling calculation to determine the current-voltage characteristics, and
the resonance peak in the figure allows for the existence of the negative-
differential conductance in these characteristics.'"

It should be noted that the waveguide mode matching technique is fully
compatible with formulation of scattering matrices,"67 although one normally
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thinks of the matching of the wave function and its derivatives in terms of
a transfer matrix approach. The waveguide approach has great versatility,
so long as the active regions are easily defined in terms of waveguide sec-
tions. It has been applied to tunneling between different waveguides,168,16 9

to the onset of localization arising from rough waveguide boundaries,170 to
bends,1 7 1 and to resonances from multiple bends in the waveguide.17 2 In
the latter, results comparable to lattice Green's function approachess5 have
been obtained. One problem is that self-consistent solutions to the waveg-
uide mode propagation have not been obtained, although the role of carrier-
carrier scattering between various sub-band modes has been studied,17, 174

and the general many-body problem has been formulated.175 Also, a gen-
eralized density-functional theory has been proposed that could be used to
incorporate many-body effects in the waveguide theory."7 6 In general, how-
ever, the modeling approaches discussed in the remainder of this review are
better suited for incorporation of many-body effects and self-co: 'istency with
the Poisson equation for the potential.

5. The Density Matrix and Its Brethren

In general, one can solve (6) by assuming an expansion of the wave
function in terms of a set of static basis functions which satisfy the time-
independent eqdation as

H =.- E.O. (14)

in which E,, is the energy level corresponding to the particular basis function.
Then, the total wave function can be written as

If we now multiply each side of this equation with b;(r) and integrate over
the position, we can evaluate the coefficient in terms of the total wave func-
tion at any arbitrary time, which we here take to be to. Then, (15) can be
rewritten as

T(r, = ) /dr'Ob*(r')n,,(r) exp ( iEn (to-t)) 41(r',to) (16)
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This may be rewritten as

TI(rt) = dr K(r,t;r ,to) T (r ,to) . (17)

Here, K(r, t; r', to) is our propagator kernal, or Green's function.
The kernal in (17) describes the general propagation of any initial wave

function at time to to any arbitray time t (which is normally > to, but not
necessarily so). There are a number of methods of evaluating it, either by dif-
ferential equations (which we pursue here), or by integral equations known as
path integrals.48 '1r In general, the form shown here is for a system described
fully by a well developed set of basis functions, which are characteristic of
the entire problem. For example, it is often the case that the time is taken to
be imaginary, in which the substitution (t - to) --* -ihi,, where 4 = 1/kBT
is the inverse temperature, and the resulting form of the kernal is that of a
system in thermal equilibrium.1" In this case, we talk about (17) represent-
ing a simple mixture of pure states. The usual case is that the exponential
is separated into the two temporal parts, and then each time-varying basis
function is expanded in an arbitrary (but different) set of wave functions, so
that we have a mixed system, and we write the kernal as

K(r, t;r',to) = EZ cj , O(r,t)0,(r',to) . (18)

The equal-time version of this is termed the density matrix

p(r, r',t) = , c..OL(r, t.Cr',t) = V (r,t)41(rJ,t). (19)

There are many different (in detail) definitions of the density matrix. It
can be defined just by the coefficients in the expansion, so that it is a c-
number matrix.1 9 It also appears as the thermal equilibrium form defined
above (for the time-independent form)

p(r, r') = E e-Eb•(r')O.(r). (20)
n

The last form of (19) defines it in terms of field operators, in which creation
and annihilation operators replace the expansion coefficients, and these op-
erators excite or de-excite each of the "modes" of the basis set. In any of
these definitions, it is important to recall that the density matrix is the equal
time version of the Green's function.
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A. The Liouville and Bloch Equations

In general, the density matrix is best characterized (for the present argu-
ment) in terms of the field operator form, which is the last part of (19). The
temporal equation of motion for the density matrix can then be developed
using (6) as

ih-= [Hp],, (21)

orl1o

ALP h 2- " + V(r) - V(r')] p(r, r', t), (22)

which is termed the Liouville equation. Sometimes, a higher order operator
algebra is used, since the Hamiltonian H is an operator in the Hilbert space
of the density matrix (defined by some basis set of functions). In this case,
(21) can be written as

ALP = flp(r, r', t), (23)

where A is a commutator-generating superoperator.ls'8 1 s' There is no prob-
lem in incorporating a dissipative term in the Hamiltonian, and treating it
by perturbation theory. In fact, this is a quite viable method of-treating
irreversible transport, as has been discussed repeatedly.183-1s5

On the other hand, if we accept the general view of the density matrix
represented by (20), then it is natural to introduce the time as an imaginary
quantity t -- -ihfi, and

,p -[-_,2 + V(r) - V(r')] p(r,r'), (24)

which is normally termned the Bloch equation in the symmetrized space of
the density matrix. In a sense, this form is a quasi-steady state, or quasi-
equilibrium, form in which the time variation is either non-existent or suf-
ficiently slow as to not be important in the form of the statistical density
matrix. There exist mathematical proofs that a unique monotonic solution
of this equation exists for the density matrix. ss Before passing on; it is also
important to note that there exists an adjoint equation to (24), which arises
from the anti-commutator relationship, as"z

-[ h2(2 82,) 1(~
' =[-"(" + ")+ V(r)+ V(rl) p(r,r') . (25)

O2m
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This will be used below in a discussion of the connection to semi-classical
behavior. In many respects, it should be noted that the density matrix
is quite often found to be self-adjoint. In Fig. 6, we show a plot of the
density matrix for a DBRTD in the absence of bias. The main diagonal, for
which z = x' in this one-dimensional model, represents the density variation
through the device. The off-diagonal parts represent the spatial correlation
that exists in the system.

B. Wigner Functions and Green's Functions

The problem with the density matrix in many semiconductor problems is
that it is defined only in real space, with the important quantum interference
effects occuring between two separated points in space. Even so, it is a
function of six variables, plus of course the time (or the temperature). In
many cases, it would be convenient to describe things in terms of a phase
space function, whose six variables arise from a single position vector and a
momentum vector. While this is not the normal case in quantum mechanics,
it certainly can be arranged.40-'1s To see how this is achieved, we rewrite
(22) in terms of a new set of coordinates, the center-of-mass and difference
coordinates, as

R " (r+r), s=(r-r'). (26)

Then, the Liouville equation can be rewritten as

A 2 _ V(R+j) V(R-j)] pRst. (27)

If we now introduce the phase-space Wigner distribution,40 in three spatial
dimensions,

fw(R, p, t) - Jd3pp(R, s, t)"ep'sA, (28)
(ih)

which is often called the Weyl transform,'8-l'9 1 then the Liouville equation
can be written as

afw 1 a + ih A a + =
j- + -p'- fw - -V -y) -- V(R + -T -9)
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in the absence of any dissipative processes. This can be rewritten in a more
useful form as

Ofw(Rp,t) +. 21p._fw(R,p,t)_ _ d3PW(R,P)fw(R,p+P,t) = 0,
ati m ORJW TP 3

(30)
where

W(R, P) d q sin [V(R + (31)

The use of the Wigner function is particulary important in scattering prob-
lems,'" and it clearly shows the transition to the semi-classical world.19
Reviewing the above approach, it may be simply stated that the Wigner
function is the Fourier transform, in the difference coordinate, of the density
matrix. These are two equivalent methods of looking at a problem, one (the
density matrix) is entirely in real space, while the second is in phase space
and often has the classical behavior as a limit. In Fig. 7, the Wigner function
for a DBRTD, in the absence of bias, is shown. This should be compared
to the density matrix version in Fig. 6. Clearly, the Wigner function shows
much of the behavior of Fig. 1, in which a non-classical behavior is encoun-
tered near the potential barriers. On the other hand, there is not a great
deal of difference in the representations of Figs. 6 and 7.

In general, the Wigner function described by (28) is not positive definite.
This is a consequence of the uncertainty relationship between position and
momentum. If (28) is integrated over all momentum, then the square mag-
nitude of the wave function results, and this is a positive definite quantity,
being related to the density. By the same token, integrating (28) over all
position provides the square magnitude of the momentum density, which is
also a positive definite quantity. It has been proved that the Wigner function
provides a smooth continuous solution to the equation of motion (30).11 Be-
cause of its close relation to the semi-classical Boltzmann equation, it may
also be shown that it provides a robust solution to the couple Liou~vile and
Poisson equations,1'9 and therefore is quite usable for device modeling. More
recently, Arnold has shown that the solution of (30) remains a "physical
Wigner function," in the sense that it is a mixed quantum state consisting
of a combination of pure states with non-negative distribution weights, for
all times t > 0.196 In fact, however, the Wigner function shown in Fig. 7
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is positive definite, and this is a general result for the equilibrium "ground
state." 197

In both the density matrix and the Wigner function, only a single time
variable appears in the problem, as it was assumed that the two wave func-
tions, or field operators, in (19) were to be evaluated at equal times. In
essence, these two approaches build in correlations in space but do not con-
sider that there may be correlations in the time domain. This approach does
not have to be taken, and this leads to the concept of the use of Green's func-
tions themselves to describe the behavior of quantum systems.1' In general,
one separates the kernal in the wave function's integral expression for the
propagator into forward and reverse times in order to have different func-
tions for retarded (forward in time) and advanced (backwards in time, in the
simplest interpretation) behavior. We do this by introducing the retarded
Green's function as (for fermions)

G, Cr, e'; t, t') = -iec(t - t') (g~r, r'; t, t')) = -iO(t -t) (rt)tr,'),

(32)
where the angle brackets have been added to symbolize an ensemble average,
which is also the summation over the proper basis states. On the other hand,
the advanced Green's function is given by
G.(r,re; t, t•, = i)(t'- t) (K(r, r•;t, t')) = i(O(t'- t) Okt(r%,t•)%(r, t)) , (33)

and one can then write the kernal itself as

(K(r, r'; t, t')) = i [Gt(r, r'; t, t') - G.(r, r'; t, t')] (34)

Finding the Green's functions from the Schr6dinger equation, or from
the Liouville equation, is not difficult for simple Hamiltonians, as for any
quantum mechanical problem. Proceeding for complicated Hamiltonians,
such as in the case of many-body interactions or electron-phonon interactions,
is not so simple and a perturbation approach is usually used. However,
this approach is not without its problems, in that the perturbation series
is difficult to evaluate and may not converge. Generating the perturbation
series usually relies upon the S-matrix expansion of the unitary operator"°

exp dl7V )) (35)
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where V(t) is the perturbing potential interaction in the interaction repre-
sentation. In nearly all cases, it is necessary to expand any perturbation
series in terms of wave functions, and Green's functions, in the absence of
the perturbation, which means at t -- -oo. In the equilibrium situation,
we can take the opposite limit as well, for the upper limit of the integral
in (35), as it is assumed that the system is in absolute equilibrium at the
point t --+ o6 as well. In the non-equilibrium situation, which is the normal
case in nearly all active semiconductor devices, the latter limit is just not
allowed. Then one must seek a better approach, and this has been given by
the real-time (non-equilibrium) Green's functions developed by Keldysh•°
and Kadanoff and Baym.201

To avoid the need to proceed to t -- oo in the perturbation series, a
new time path for the real time functions was suggested by Blandin et aL/2°
(There may well have been others, but this seems to be the work which
put it in proper context.) This new contour is shown in Fig. 8, where the
contour evolves from the equilibrium (thermal) Green's function at to - iAf
to a real-time function at to. The contour then extends in the forward time
direction to max(t, t'), hence returning in the anti-time ordered direction to
to.-2 In many cases, one lets to -- -oo if we are not interested in the initial
transients of the system. The handling of the Green's function, when both
wave functions are on either the upper or lower branch is straight-forward.
On the other hand, when these two functions are on different branches, two
new functions, the correlation functions must be defined.20 These are the
"less than" function

GCre;tt') = i %Pr' )Prt (36)

which has the opposite sign for bosons, and the "greater than" function
G>" (r, r';t, t') = -i (41,(r, t)1Pt(r', t')> (37)

In general, these four Green's functions are all that are needed to handle
the complete nonequilibrium problem (in relatively lowest order, as will be
discussed later), but it is often found that two other Green's functions are
useful. These are the time-ordered and anti-time-ordered Green's functions,
in which the ordering is in the positive time progression around the contour
of Fig. 8. These two are

G,(r, r'; t, t') = 0(t - t')G>(r, r'; t, t') + 0(t' - t)G<(r, r'; t, t') (38)
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and

Gf(r,rV;t,t') e(t' - t)G>(r, r';t,t') + e(t - t')G<(r,r';t,t') (39)

There are obviously relationships between these six Green's functions, and
these can be expressed as

G, = Gt -G< G> - GF = E(t - t')(G> - G<) , (40)

G. = Gi - G' = G<ý - Gr = -O(t' - t)(G> - G<) . (41)

For systems that have been driven out of equilibrium, the ensemble aver-
age brackets, indicated in the definitions of the Green's functions, no longer
signify thermodynamic averaging or averaging over the ground state (at
T = 0), since the latter quantities are ill-defined. Instead, the bracket in-
dicates that some average needs to be taken over the available states of the
nonequilibrium system, in which these states are weighted by the nonequi-
librium distribution.

The equation of motion for the Green's functions are basically derivable
from the Liouville equation above. The development of this equation for the
various Green's functions will be put off until Sec. V. Here, we note that
there are many methods of collapsing the Green's functions into single-time
functions, which lead to a variety of transport equations.2s Let us consider
how to arrive at the Wigner function from the Green's function. We note
that the definition of the density matrix, that led to the Wigner function,
is basically quite similar to that of G<. This is the proper association, as
the latter function relates to the nonequilibrium distribution function. 201,2 04

Thus, we introduce the center-of-mass and difference coordinates (26), and
equivalent ones for time (with T the average time and r the difference time).
Then it is clear that

fw(Rp,T) =- im d3sG<(R,s,T,Tr)e-p's/A, (42)

or
fw(R,p T= Jd)wG<(R,p,T,w), (43)

where the difference time has been Fourier transformed into a frequency in
the last expression. It is clear from this last expression that the difference
coordinates, introduced into the Green's function as in the density matrix,
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are Fourier transformed, and the Wigner function obtained from the Green's
function by averaging out the frequency (or energy) dependence. Thus, the
crucial kinetic variable in the Wigner function is the momentum, and not the
energy, although the two are certainly related through a dispersion relation.

C. Reduced Density Matrices and Projection Operators

In each of the descriptions that has been introduced here, the density
matrix, the Wigner distribution, and the real-time Green's functions, it has
more or less been assumed that one is dealing only with the electron system.
Indeed, it has mainly been assumed that one is dealing with single noninter-
acting electrons so that an equation for the equivalent one-electron distribu-
tion function is adequate. Before proceeding, it is of interest to consider how
a quasi-kinetic picture can be obtained for the equivalent one-electron den-
sity matrix (or other approach) from a general system in which the electrons
and the lattice all contribute to the density matrix, which can be a many-
electron (and many atom) function. In general, the system is described by
the Hamiltonian

H = Ho+ HF- +HL + HL, (44)

where the terms on the right-hand side represent the electronic motion, the
external fields (in the scalar potential gauge), the lattice motion, and the
electron-phononinteraction, respectively. The latter can include the coulomb
interaction between impurity atoms and the electrons. The Hamiltonian H0
includes all of the appropriate many-body terms and energy shifts appropri-
ate to the full electron many-body problem, the details of which will not be
treated here. The field term represents the driving fields through a simple
form Hp = -eF. r.

The total density matrix p is defined over the entire system: electrons,
lattice, and interaction.17' If it is decided to represent p in terms of a com-
plete set of eigenstates for the electron and lattice systems separately, the
general wave function will be a product of the individual wave function basis
sets. The total trace operation, which. appears as the representation of the
ensemble average for a matrix form of the density operator, can be separated
into a succession of of separate trace operations TrL and Tre, which represent
the partial traces, or partial ensemble averages, over the lattice and electron
components, respectively. This allows us to define the electronic density ma-
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trix p. = TrL(p). It is probably worth noting at this point that it is not at all
obvious that this decomposition of the density matrix into clearly definable
electron and lattice contributions will hold except in the steady-state case. 17
In essence, the objections are equivalent to those that limit the use of the ef-
fective mass approximation to relatively long time scales for the interaction.
We will explore this more in later sections.

The approximations above are immediately invoked by introducing (44)
into the Liouville equation and then summing over the lattice degrees of
freedom as described. This gives

ih}- -= [Ho + HF,Pe] + TrL{[HeL, PI. (45)

Clearly, the first term on the right-hand side is the electronic motion within
whatever effective mass approximation may be suitable. The second-term
is the electron-lattice interaction. The trace over the lattice coordinates is
equivalent to the summation over the phonon wavevectors in the electon-
phonon interaction.

At this point, it is important to project out the desired part of the electron
density matrix, which is usually the one-electron equivalent density matrix.
This will be done by the use of projection operators."' To begin, (45) is
Laplace transformed, with z taken to be the Laplace transform variable con-
jugate to tho time. Then

S + A.P. = jTTL{heLP} + Pe(O), (46)

where HII = H0 + HF, and the superoperator notation for the commutators
has been used. We now obtain the one-electron density matrix through the
projection operator P throughls2,1ss

Pe , p 2 =p Q=lp (47)

This particular projection operator commutes with the trace over the lattice
variables, so that we may define a scattering operator as

-p,, - TrL{P Hf LP }. (48)

With these definitions, (46) can now be written as12

pci(S) = P iiip,(O). (49)
37h - He -
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It is dear at this point that one only needs products of various projections of
the resolvent operator (the fraction term above), and the projection operator
identity3°

a, - - S - 1o - PAP S - ýfi

+ Q. 1 QL (50)
s-QHQ

where

C=PHQ •. . (51)
s-QQHQ

The latter term connects a "diagonal" element to an off-diagonal element,
and then reconnects them by the conjugate operation, so clearly relates to
a second-order interaction of the one-electron density matrix through the
electron-lattice interaction. This leads us to rewrite (48) as

f;P-2(a) = TTL{fP (11L + A.)a 1 + ý(feL + H^e)PpJ . (52)
1- -((fL + )QH -. 5

The temporal equation is obtained again by retransforming the density
matrix. This results in the quantum kinetic equation

8 Pci _/P/.PP.,(t) t~- - f ,( t')pe,(t')dt'. (53)

0

Clearly, the first-term on the right-hand side gives rise to the spatial vari-
ations of the one-electron density matrix that appear in (22), including the
potential terms. The last term on the right-hand side is the scattering term,
which has been ignored in the discussions above. This term incorporates
retardation of the scattering, which by itself is a great difference from the
Boltzmann equaiton. On the other hand, if the scattering term t varies
slowly, then the convolution integral can be separated, and the Boltzmann
transport equation reasserts itself as the semi-classical limit. Indeed, to low-
est order, the scattering integral, the last term on the right-hand side of (53)
is readily shown to give the Fermi golden rule for perturbation theory. The
essence of the argument here, is that the electron-phonon interaction, the
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electron-impurity interaction, and even the electron-electron interaction can
all be treated by perturbation theory, so that the one-electron (or one-hole)
treatments developed in the preceeding paragraphs are all the equilibrium,
or zero-order, formulations to begin with, and the higher-order interactions
will work to perturb these solutions.

6. The Kubo Formula and Langevin Equations

Although a kinetic theory, such as that of the above paragraphs, is usu-
ally used as the basis of transport theory, there are alternative approaches
tied rather directly to the use of correlation functions, either within a lin-
ear response formalism or with a Langevin equation formalism. The latter
has existed for quite some time, but the formal development of the linear
response formalism is relatively recent, following the work of Kubo.23 As
this approach is often used, we will review it in this section and then relate
it to the various moment equations that can be obtained from the kinetic
transport equations.

A. The Kubo Formula and Correlation Functions

In the Kubo approach, it is desired to find the response of the coupled
electron-phonon system to a time-dependent perturbation by calculating to
lowest order the change in the density matrix. As earlier, the Hamiltonian
is written in the form (44). The difference here is that it is the electric field
term HF that is taken to be the perturbing potential. The quantity that is
of interest is the current response to this electric field; e.g., the field is the
forcing function and the current is the response to that force. To show this
in detail, the field (assumed to be an a.c. field for the moment) is written in
the vector potential gauge, so that the perturbing Hamniltonian term may be
written as

HF = dr A(r,t).j(r), (54)

where j(r) is the paramagnetic part of the symmetrized total current opera-
tor. Now, one can either transform everything into the interaction represen-
tation, keeping just the lowest order terms in the exponential expansion (35)
for linear response, or expand the density matrix in the Liouville equation
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(21). The latter approach is used, although the end result is the same. The
density matrix is expanded as

p = po+ p(, (55

where po describes the system prior to the application of the perturbation
and is thus a system in which the electrons and the lattice axe in equilibrium
with each other, and with any internal electric fields that may result from
inhomogeneous distributions of dopants within the semiconductor device.
The linearized Liouville equation is then given by

,,---• = [H, 6p(t)] - [Po, HF] , (56)

iti-O- = [H, po] = 0. (57)

Here, H = Ho + HL + HL. The linear perturbation in the density matrix
can then be obtained to be

t

6p(t) = je-it/A I dt'[po, HF(t')]ei'/f. (58)
0

In this last equation, it has been assumed that the perturbing Hamiltonian
has its own time variation (which is the case for the field in the vector po-
tential gauge), but vanishes for negative times. The exponentials in the
unperturbed Hamiltonian and the time variat'Jn of the perturbation will re-
sult in the current operators winding up as the interaction representation,
although we did not begin with it. It should be noted that the equilibrium
density matrix produces no current, so that

< t) =TrJ(rt)p(t)} = dt'Tr{po[HF(t'),j(r,t')]}, (59)
0

where the cyclic properties of the trace have been used, the displacement
current has been ignored, and

j(r,t') = t/r)e (60)

It is possible to uncouple the retardation that appezis in (59), by taking
the Fourier transform of this equation and recognizing that the electric field
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is related to the vector potential by F(r,w) = iwA(r,w). This leads, for a
homogeneous electric field, to the result for the conductivity

1 Jd3r'Tr{poUi(rw),J#(r',w)] , (61)

which is homogeneous only for size scales large compared to the inelastic
mean free path.20 7 The term in the ensemble average (the trace operation)
is a retarded two-particle Green's function. It has an imaginary part which
must be canceled by the displacement current at equilibrium, since the con-
ductance is a real quantity at zero frequency. There have been many dis-
cussions through the years about the accuracy and applicability of the Kubo
formula (61),208 but it has now been fairly well established that it is accu-
rate and gives results that agree with other treatments. Kubo himself used
the approach to give one of the first detailed quantum treatments of high
magnetic field galvanomagnetic effects.2W

One important consequence of the discussion here is that the current
response, and the conductivity, is now defined in terms of the fluctuations
of the current itself. In essence, this is just the correlation function (or
Green's function) that appears in the integral, and is a verification of the
importance of the fluctuation-dissipation theorem. The current that flows
(the conductivity) is determined directly by the dissipation arising from the
presence of the scattering processes and the electric field. The correlation
function describes these fluctuations, and the Kubo formula is no more than
a direct statement of this important theorem. In fact, it is a powerful tech-
nique with which to calculate the noise properties of mesoscopic (as well as
macroscopic) conductors.21 0 Since the correlation function involves the fluctu-
ations due to scattering processes, it directly incorporates these interactions
within the calculation of the two-particle Green's function. Indeed, the role
of carrier-carrier scattering in weak localization,211 and of impurity scatter-
ing in universal conductance fluctuations utilize this approach,8°,69 even in
inhomogeneous field situations such as these. Even in the so-called ballistic
limit, (61) can be extended to study the a.c. response of quantum wires
effectively. 212

The Kubo formula (61) is valid at finite temperatures and for transverse
as well as longitudinal fields. At low frequencies, however, there is a problem
related to the coefficients in front of the integral. This is related to the
fact that the vector potential diverges at zero frequency is approached. To
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get around this problem, the derivation can be modified by the use of an
approach outlined by Mahan. 213 For this approach, the commutator that
appears above is rewritten using the identity

0• acF(-t - ih,6')

[F(-t), pol = ihpo f dflF , (62)
0

which is easily proven using the properties of thermal Green's functions, with
-= 1/kBT. With this identity, the conductance (61) can be rewritten as

t P

o,O(r, 0) = I dt' f d,6'1 d3r'Tr{poj,(r', -t - ihfi')jp(r)}. (63)
0 0

Although this result no longer contains the frequency, it still contains a nonlo-
cal integration over the position variables, and still assumes that the electric
field is uniform throughout the active region. It should also be noted that the
expectation value is now a proper correlation function and no longer contains
a commutator product.

At this point, it is important to point out that we have made a significant
shift in theoretical emphasis. Until this section, the entire set of deriva-
tions and considerations has focused upon the streaming terms of the kinetic
equations, and not upon the relaxation and/or scattering terms. With the
present discussion of the Kubo formula, the opposite has now occured, in
that here we are focusing upon the relaxation/scattering terms that give rise
to the fluctuations and the streaming terms have been buried in reaching
the Kubo formula (63). To be sure, the two approaches are not separable,
and one must still evaluate the two-particle correlation functions that are the
heart of the Kubo formula, and details of the relaxation effects of these two-
particle Green's functions will expose the overall response of the system. 214

This concentration upon the dissipative processes, rather than the details of
the streaming terms will also be present in the next paragraph.

B. Retarded Langevin Equations

Another alternative to transport theory depends upon the (retarded)
Langevin equation and the Onsager relations. In this approach, the time-rate
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of change of a dynamic variable, such as the velocity, is related to a dissipa-
tive function, or to a series of forcing terms through dissipative coefficients. 215

The general form of these equations is

dt = ( I dt'Kik(t')Fk[a(t - t')] (64)

k 0

where a = {ji} is the set of all observables, suitably ensemble averaged
to produce the c-number observable, and the Fk are the thermodynamic
forces.216 The memory functions Kik are time-dependent correlation func-
tions, just as in the Kubo formula. Indeed, in some sense, (64) is a generalized
form of the Kubo formula. The general approach to finding the equations
that make up the set (64) is to expand the density matrix in linear response,
as done in (56) and then use this to compute ensemble averages of the dy-
namic variables, which is just the procedure used for the Kubo formula. It
may be noted that the ordinary Langevin equation (absent the convolution
integral in time) may be obtained if the thermodynamic forces vary slowly
on the scale of the relaxation forces, and the memory functions vary suffi-
ciently rapidly (and decay sufficiently rapidly) that the integral over time is
not sensitive to the final time; e.g., the time integrals must be convergent.

Advantages to using the Langevin equation approach is the equal treat-
ment of the frictional (dissipative) forces (which give a non-vanishing result
in the memory function integration) and the fluctuating forces, which aver-
age to zero in any time integration. 217 Moreover, the generalized Langevin
equation is a reduced description of the system, which can profit from the
use of many approaches developed for statistical physics. While it can be
argued that this approach does not now need to worry about the density ma-
trix, the latter is inherent in the treatment, and one still must worry about
the details of the evaluation of the memory functions, which in keeping with
the Kubo formular are two-particle correlation functions. Nevertheless, it is
possible to take the generalized Langevin equation beyond linear response
to treat, for example, localization of the carriers218 and high-electric-field
transport. 32' 219-22 2 Because one must inherently calculate the memory func-
tion as a many-particle interaction, it is easy to extend it to a many-body
interaction. 22, 2 2 4

Over the past few years, an alternative approach has cropped up to gen-
erate these Langevin equations. This approach is given many names, but
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the most useful is force balance. We can understand this approach Trom tile
simple fact that, in analogy to the Liouville equation, the time variation of
the expectation value of an operator, which itself is not an explicit function
of time, is given by

at h ([H, (65)

At first sight, these results appear to be the same as those of the retarded
Langevin equation above, and in some cases this is the proper interpretation.
However, the manner in which these force balance equations has been used is
to calculate the resistivity, and not the conductivity. Recall that it is the field
(or the potentials) that are applied to the system, and it is the current which
is the response of the system, so that the proper Kubo formula, or Langevin
equation, deals with the conductivity or the momentum, respectively, for the
response. Much of the literature on the force balance arises from Ting and his
colleagues, 2 25 although Peters and Devreese2 26 have also used this approach
to compare the force balance with the Feynman path integral approach. In
principle, the evaluation of the resistivity is conceptually thought to be easier
since, for weak scattering, one only has to keep the low order terms. However,
this approach has been criticized rather heavily, and there is an indication
that the correct evaluation of the resistivity (and corresponding coefficients
for other equations than the current) still requires an infinite summation
over terms, even for weak scattering. 227' While the former authors feel that
they have answered (successfully) such criticism, the approach remains con-
troversial in many aspects, particularly as many approximations made in the
earlier formulations reduced the scattering integrals to the Fermi golden rule
and to Boltzmann transport. 2 s

One problem with this approach is that (65) requires some sort of ensem-
ble average to be performed, and the question is just which ensemble is to be
used. Obviously, it is not the equilibrium ensemble, since there is no current
in this ensemble. Thus, the non-equilibrium distribution, or density matrix,
must be computed as part of the problem, and this part of the problem is of-
ten ignored. In particular, the nature of the distribution can affect the quan-
tum corrections to the streaming terms in the quantum kinetic equations. On
the other hand, more recent calculations, explicitly using a quasi-equilibrium
density matrix (as will be discussed in the next section), yield results that
are in keeping with other approaches. 2•' 293 With the quasi-equilibrium den-
sity matrix approach, the results seem to be equivalent representations of the
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Retarded Langevin Equation and the Kubo formula.

These approaches have been applied to a variety of problems, in which
estimates of the correlation functions have been made through explicit cal-
culations, such as in the case of noise and high-electric-field transport.2 31 - 235
Transport in quasi-two-dimensional systems and wires has also been consid-
ered,m-m as has nonlinear transport with nonequilibrium phonons. 240

7. Boltzmann-Like Approaches

The Boltzmann transport equation (1) has been studied for a great many
decades, and a considerable insight into its functioning now exists. On the
other hand, quantum transport has been studied for a considerably smaller
amount of time, and in most cases such insight is nonexistent. For this reason,
many theoretical approaches have been aimed at trying to establish (1) as
a result of a limiting process from a more fundamental quantum basis, that
is, one attempts to determine a quantum Boltzmann equation. 241 In general,
these approaches do not simply reduce to the normal Boltzmann transport
equation, since the proper manner in which to take the limit has never been
defined well. Nevertheless, these derivations have been pursued for quite
some time.Y2 In general, however, it is necessary to formulate the problem
with one of the more exact quantum transport equations, and then connect
one of the quantum distributions to the semi-classical Boltzmann distribution
through some sort of ansatz. 2°4.' 24 This approach tends to work well when the
major problem is one of high scattering rates in an otherwise weak scattering
process. 2" In most cases, the results look just like the Boltzmann equation,
although some novel approaches have been suggested. 245

In most cases, the quantum transport may be cast into the form of the
Boltzmann equation from e.g. real-time Green's functions. Then known
forms for quantum animals such as the polarization24 or polaron effect 2 47

can be used in the transport equation as scattering terms. In other cases,
the major quantum mechanical effect is the dynamic change of the den-
sity of states, such as in Landau quantization, and this can be incorporated
within (1) by using a multi-band picture,24 8.249 although this is sometimes
done through the force-balance equation, which is subject to the concerns
mentioned above. Other effective approaches use the real-time Green's func-
tions to treat the quantum transport, and the limit is approached through
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taking the equal time results, so that variations in densities are the main
result.25°-252 In this latter case, the equation of interest is a moment of the
kinetic transport equation, which relates it to the approach of the last section,
although many higher order moments can be used as well. 2W4

The major point to be made here is that the transition from quantum
to classical (or semi-classical) transport must be approached carefully, and
the proper route is not at all obvious. Consequently, some of the more
obviously useful approaches are through moments of the transport equations
themselves, as there is often a more obvious connection between the quantum
and classical worlds. This was the basis of the previous sub-section, as well
as the next. Nevertheless the transition often incorporates effects which are
not present in the classical world and make the limiting process difficult to
achieve.

8. Moment Equations-The Transition from Classi-
cal to Quantum

The discussion of the previous two sections, regarding how to achieve
force balance (or other balance) equations in a method which does not uti-
lize the rigor of the Kubo formula (or the equivalent retarded Langevin equa-
tion), suggests that one should approach this topic with a great deal of care.
Foremost, it is important to know that the ensemble averages that must be
computed in e.g. (64) depend upon the details of the ensemble, or distri-
bution function, itself, so that this crucial computation must still be carried
out. In many situations, it is possible to create a quasi-equilibrium distribu-
tion function, which is parameterized in the observables. For each of these
parameters, an equation of motion, describing its temporal evolution, must
be formulated-this leads to the set of so-called balance equations. This ap-
proach is quite old, having been basically studied for more than half a century
(not counting the work on the classical Boltzmann transport equation). The
structure of this is that the evolution must be decoupled from the initial
condition, usually by inter-particle scattering, so that a quasi-equilibrium
density matrix may be defined by its integral invariants. 253 Indeed, it may
generally be said that the quasi-equilibrium density operator may be written
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as54 P=exp[Z-EfkPk] (66)
1 k

where Z is the partition function, fk is the integral invariant force, and
Pk is the conjugate quantum mechanical operator. Examples of these are
the Fermi energy, the average momentum, and the inverse temperature #
for forces, which are proportional to the conjugate force for the number,
momentum, and energy operators, respectively. To each of these pairs, we
must have a "balance" equation which describes the temporal evolution of
the appropriate quantity.2" In many cases, these balance equations offer a
more convenient method of solving for transport properties, or for modeling
devices, than the more detailed full solutions of the appropriate quantum
mechanical distribution.

Even with this approach, one is still faced with the manner in which the
classical limit should be approached. Consider for example (27) which can
be rewritten in the form (in the absence of scattering)

S+ [V(R + - V(R+ )]p(Rs)= 0 . (67)

It would be nice to accept the classical limit of this equation as the Boltz-
mann equation (1). For this to be the case, however, several assumptions
and limits must be introduced. One that is not too difficult to make is that
the corresponding momentum is given by p = -ihi-. Indeed, this is the
result expected from the transformation into the Wigner formulation. The
next term is more critical. To obtain the classical force term in (1) requires
expanding the potential in a Taylor series, and then associating the differ-
ence coordinate with -s -+. -. , which again is not unusual as it connects p
and s as conjugate operators. The problem arises in the fact that woe must
also limit the potential to be of no higher power than quadratic in the coordi-
nates. This is just not the normal case, and we must face the fact that if the
potential varies with higher powers than quadratic, the quantum transport
equation will not reduce to the classical one! There will be extra terms that
represent these higher-order variations; indeed, these extra terms correspond
to the Wigner-Kirkwood expansion used in estimating the Wigner transport
equation. But this behavior is just the situation that is expected from the
density variation shown in Fig. 1 above. It is clear that we do not approach
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the classical limit by simply letting A -- 0; the limiting process is more in-
volved than this. As a final illustration of this, we now note that the classical
distribution function is finally obtained by f = lims-o p(R, s), but this limit
must be taken after all appropriate derivatives (with respect to the difference
variables) are evaluated.

In many respects, the behavior of the quantum distribution, and the
density, must incorporate a nonlocal quantum potential which produces the
behavior of Fig. 1. We introduced this topic in the early parts of this review,
where we discussed the Wigner 40 and Bohm47 potentials. As mentioned,
other approaches have been based upon variational approaches, 49 or other
estimations.2m There has been a great deal of discussion in particular about
the Bohm potential, as it tends to be linked closely to a different interpreta-
tion of quantum mechanics, which is somewhat controversial.25 7 Nevertheless,
it has demonstrated the ability to predict quantum energy levels and is useful
in many applications,IsM particularly in mesoscopic devices.2 Here,.however,
we will take a different approach to find an equivalent quantum potential.
To this end, we write the adjoint of the Bloch equation in the center-of-mass
and difference coordinates as (again, in the absence of scattering processes)

C'• =I ±1 L 1 2r ' Ip- [cosh( s- V)V(R)]o (68)

where

2[cosh(.1s.- V)V(R)J = [V(R + ~)+ V(R - ~).(69)

Within the approximation that the logarithm of the density matrix may be
approximated as linear in the potentials, it may be shown then that the
density matrix may be found from (68) ass°

_3(Q UQ Pd (70)
p(R, s) - expf--6(Wq " UQ) -+ f() i (2 } (

where the first term is found from the equation

82(WQ + UQ) IO(Q + UQ) 2 8,
O• 2  +S. +WQ+UQ = ---- 2'p+W(R,s), (71)as 2m OIs 2

and W(R, s) is given by (69). The solution to this is given as50

WQ(Rs)+Uq(R(s) A2 IS {W( A2 ep ,

(72)

48



Thus, the actual potential, and an additional density-dependent function,
are smoothed by the exponential Green's function. Here, AD is the thermal
de Broglie wavelength introduced earlier. The exact actual relation of (72) to
either the Wigner or the Bohm potential is not currently known. However,
it has now been shown that, in the limit of slowly varying potentials where
only low order terms in the potential expansion are treated, (72) reduces to
simply

lim[WQ,(R, s) + UQ (R, s)] --+ V(R,0) + UB(R,0), (73)

so that it is the Bohm potential that first modifies the statistical thermody-
namics of the distribution function.

A. The Hydrodynamic Moment Equations

The density matrix has the usual characteristics that, in the limit s --+ 0,
and with appropriate other limiting processes (e.g., in connection with A), it
becomes the normal density n(R). The equation of motion for the density
matrix, which should have some asymptotic connection with the Boltzmann
equation for n(R), is obtained from the Liouville equation, and is given from
(67) as (in the absence of dissipation)

at 8  Aaep + 2  i [sinh(2s V)V(R)Jp(R, s) = 0. (74)

Here, the sine function has been obtained in the same manner as the cosine in
the preceeding paragraph as a representation of the two displaced evaluations
of the potential. We note that this last term leads only to odd orders of
derivatives of the potential, as already noted, and the higher orders (higher
than the first order) are clearly quantum correction terms as they do not
appear in the Boltzmann equation. If we now take the limit of this equation
as s --- 0, we find

= lim[i- 2P l--(pin), (75)
Di -0 m 8R~s m

where we have used the operator definition of the momentum given above, as-
serting that an averaging process takes place as well. This is the well-known
continuity equation. However, there are some problems of interpretation,
since in the absence of dissipation the transport must be reversible. In a
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strict sense, the distribution is symmetric across the diagonal axis (s = 0),
so that the average momentum and the time derivative both actually vanish.
The equation strictly has meaning when dissipation in the system (along with
the proper driving forces) create asymmetries in the density matrix and drive
it out of equilibrium. This does not mean that we cannot create an asym-
metric distribution representing ballistic transport through a dissipation-free
region. However, to do so requires special considerations in the contacts
(hence the need for treatment of an open system) to maintain this special
distribution function.75 Then, to consider (75) as having meaning separate
from the special situations of the contacts is improper, as the contacts provide
the sources and sinks of nonequilibrium carriers that make up the asymmet-
ric distribution. The dissipative terms, which will be discussed below, then
provide these sources and sinks on a local scale throughout the dissipative
region where transport is being considered. Indeed, it is impossible to de-
fine a diffusion or drift current from (74) without the dissipative terms, as
the currents due to these processes must result from a careful balance of
driving forces and dissipative forces. Nevertheless, we can use (7t) to define
the appropriate moment of the distribution. Within this interpretation, and
limitations,

oppdn(R) = Tr{-ihL-}, 
(76)

and the trace is a local evaluation which produces the classical (or semi-
classical) density variations.

In a similar fashion, the first-order moment equation can be developed by
taking the derivative of (74) with respect to the difference variable. Then,
upon passing to the limit, we find

O(pin) = 2 Vh (lim a2/_2 n(R)VV .(77)

The first term on the right-hand side is the normal divergence of the "mo-
mentum pressure" tensor in the classical limit. As is often done in the semi-
classical case, we may approximate this by taking the pressure tensor as an
isotropic scalar quantity which leads to

h21' a2 B >n(R). (78)
n 55+0 -5S-2 <>50
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Using our quantum potential derived above, this latter quantity becomes

< E >= Yell + -3 + P-'d (79)
26 2m

where

U, 02(Wj + UQ) (2 W2P (80)
.,fu =,, 'X2 192(wQ+uQ) - {w(R) + a}. (o

Thus, the effective quantum potential is the difference between the smoothed
value and the unsmoothed value. This means that if the driving functions, the
potential itself and the density variations that respond to this potential, are
slowly varying functions on the scale of the thermal de Broglie wavelength,
the effective quantum potential goes away and is not a factor. In this sense,
we recover the classical forms for the balance equations in the limit that
the spatial variations become slow on the scale of the thermal de Broglie
wavelength. In some sense, the first corrections appear at a WKB level of
variation, as may be expected. In fact, in the limit in which the potential is
slowly varying so that only the low orders of the potential expansion need
be maintained, it is found that the effective potential reduces to the Wigner
potential. Thus, while the statistical mechanics are governed by the Bohm
potential in this limit (discussed above), the transport behavior is governed
by the Wigner potential.

To obtain the energy equation, we need to take the second derivative of
(74) with respect to the difference coordinate, and then pass to the limit of
vanishing s. For this, however, we need to evaluate the third derivative of the
density matrix, with respect to this difference coordinate. In keeping with
previous approximations, this leads to (again, in the scalar approximation
with no dissipation in the system) the energy equation (with no dissipation)

8 [ is. Pp] -P(v)(,)-(d
a[< E > n(R)] = V- [--imL ] = m--(VV)n(R), (81)

and the term in large square brackets may be evaluated as

ill3 
. ~_P 1 2+

- lim -- --3 _+ Uff + n(R). (82)
m2 s-o as Wm2P
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This particular form of the energy arises from the particularly simple manner
in which the scalar approximation has been used to achieve the diagonal
result. A more careful evaluation of the full tensor approach will yield a
slightly different result, and some of the numerical factors can change (for
example, the last term in the parentheses often appears as 5/2 rather than
3/2).260

We note in these developments that the effective quantum potential has
contributions from both the spatial variation of the potential and from the
density variation that is a response to that potential variation. This differs
from earlier treatments, in that early WKB expansions easily obtained addi-
tional terms in a Taylor series expansion of the potential, with the assertion
that this connected to the logarithm of the density through a simple classical
partition function. This produced an effective quantum potential that is one-
third of the Wigner potential (2 ).40-178-261 Actually, it is important to note
that the form of the effective potential arises from the manner in which the
second and third moments of the density matrix in the difference coordinate,
as represented by these respective derivatives, are related to the potential
and average momentum and energy.46,2s Nevertheless, it is not possible to
simply relate the higher-order derivatives of the potential directly to the den-
sity matrix, as the actual effective potential arises from the self-consistent
interactions between the density and the potential.

B. Applications in Modeling Devices

The classical hydrodynamic equations have a long history in semicon-
ductor device modeling.2M-26 The extension of these approaches to include
the modifications of the statistical mechanics due to the quantum effects has
allowed one to begin to model smaller devices without the need to use a
fully quantum kinetic approach. 4',2672•2w Here, we concentrate on the effect
played by the effective quantum potential in the device. Grubin et al.2G'
and Gardner•° have used the quantum hydrodynamic equations, with the
effective potential taking the value of 1/3 of the Wigner potential, to model a
single tunneling barrier and a DBRTD. In particular, the former authors com-
pared the results with exact calculations using the density matrix directly,
and found good agreement between the two approaches. For the transport,
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a Fokker-Plank form of dissipation was added to (74) in the form

Lp[ = 2s ap 4Ds2

T r 9s P2 p. (83)

In Fig. 9, the effective potential is shown in the region of the single barriers
described by

Vb(z) -LOi[tanhxa -tanh (x b a)] ,(84)

where V0 = 0.5V, a = 15nm, and b = 1.315nm. It can be seen from this
figure that the effective potential has a peak that is almost 60% of the actual
potential in a region on either side of the barrier.

Using the Wigner potential itself, Zhou and Ferrym have modeled MES-
FETs in GaAs and SiC, and HEMTs in the AlGaAs/GaAs and strained-
Si/GeSi heterojunction systems for ultra-submicron gate lengths (L, < 0.1prm).
For these studies, the Wigner potential form for the effective potential was
used, and a relaxation-time approximation was used for the dissipation, as

,OpjI = p(R) -po (R) (85)

Separate relaxation times are used for momentum and energy, and the energy
dependent values for these axe found from ensemble Monte CaAo calcula-
tions for homogeneous material. It should be remarked that po(R) is not the
equilibrium Fermi-Dirac distribution, but is the actual spatially dependent
diagonal density matrix found self-consistently with the built-in potentials
from gates, doping variations, or barriers. For example, in the DBRTD, it
is the density appropriate to either Fig. 6 for the density matrix or Fig. 7
for the Wigner distribution (which gives essentially the same hydrodynamic
equations). Normally, for example, one expects (85) to vanish when the con-
tiuuity equation (75) (the lowest-order moment equation) is computed. This
is true, however, only so long as the local density remains that appropriate to
the unbiased self-consistent potential. In active devices, the density can de-
viate from this latter value when applied potentials exist, and the scattering
decay term in the continuity equation corresponds to the diffusive restoring
forces that work to reduce the charge fluctuations. In essence, these are
spatial generation-recombination terms that correspond to the movement of
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charge under the scattering induced diffusive processes. We return to this
point later.

In Fig. 10, the effective quantum potential is shown for the GaAs MES-
FET. Here, the potential is large at the interface between the active layer
and the semi-insulating substrate, as well as around the gate depletion layer.
The quantum potential works to retard channel pinchoff, leading to a gen-
erally higher current through the device. In Fig. 11, the carrier density
profile in the plane normal to the gate (and under the gate) is shown for a
GaAlAs/GaAs HEMT. The quantization in the depleted GaAlAs layer leads
to a reduction in the real-space transfer of carriers out of the active chan-
nel. On the other hand, the tendency of the quantum potential to retard
pinchoff also works to reduce this real-space transfer. These two effects lead
to a current enhancement of as much as 20% over the classical results (where
the quantum potential is set to zero). It is clear that the quantum effects
will be quite important in devices with gate lengths below 0.1 prM. 270 On
the other hand, it is clear that we have just begun to examine the quantum
effects that can occur in such small devices. All of the above simulations
have been either one- or two-dimensional simulations. As discussed in the
introduction, a small device of 0.05 x 0.1 pm gate (length times width) will
have only of order 100 electrons in the active region. This suggests that the
non-uniformities, and the individualness, of the impurities and electrons, will
lead to significant quantum fluctuations. 271 In fact, Monte Carlo estimates
of the inelastic mean free path in Si at room temperature suggests that this
quantity is of the order of 0.1 pm at low fields and > 0.05 pm for fields
up to 105 V/cm. 27 This suggests that effects such as universal conductance
fluctuations may be observed at room temperature in such small devices.
To fully investigate these effects, three-dimensional simulations are required
in which the charge is a set of spatially localized impurity atoms and the
corresponding electrons, rather than smoothed distributions. Or, more exact
quantum mechanical simulation approaches are required.

III. Modeling with the Density Matrix

In writing the density matrix as in (19) or (20), it is assumed to be a sin-
gle particle quantity. In fact, the density matrix starts life as a many-body
quantity,273 and it must be projected to a description as a single-particle den-
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sity matrix. This process is the same as followed in Sec. II.5.c. In essence,
the projection operator that accomplishes this task integrates out the vari-
ables of all particles except for one, leaving a two-particle interaction which
couples the one-particle density matrix to a two-particle density matrix.2 7 4

Approximations to the latter term particle-particle lead to concepts such as
Hartree and Hartree-Fock interactions, and to higher-order scattering pro-
cesses which involve dissipation.

9. Some Considerations on the Density Matrix

To use the density matrix to describe transport in quantum structures, we
must find a set of governing equations that describe the behavior of particles
in the appropriate structures, including the role of scattering, and the all
important effects of the boundary conditions. In this sense, the situation
is exactly the same as for the classical modeling problem, except here our
equations have a quantum origin, as discussed above. A ke'y issue in any
modeling problem is the computation of the current, and with the density
matrix this may well be the most difficult part of the problem. In this section,
we will attempt to illustrate how this is done by way of example, and use
some particularly simple cases, such as Ohm's law, before proceeding to more
complex calculations for barriers. We will do this in somewhat more detail
with the density matrix, than with the other approaches to be discussed
in subsequent sections, because the basic techniques do not differ in most
cases, but are important to understand. In general, dissipative transport is
treated through a perturbative treatment, as introduced in the preceeding
section through the interaction representation. This approach has had a rich
history. 83,2 7 5-2 The density matrix approach has been used to compute
transport in the presence of a uniform, high electric field in order to sense
the changes arising from the quantum distribution function.=-= Monte
Carlo techniques have been developed to study transport in this regime,2,28
especially for studying transient transport. 8-2s

It is possible to work with a density matrix that is described in the mo-
mentum representation; e.g., the density matrix is a function of two momen-
tum variables rather than the two position variables in (22). Nevertheless,
we will describe only the case in the position representation, for which the
equation of motion is given by (22). This latter equation is a partial differ-
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ential equation permitting specification of conditions at boundaries as well
as of an initial condition at some time to. For those situations where current
flows and dissipation is an issue, such as in actual devices, (22) must be
modified to include a term representing the decay of the density matrix due
to scattering processes. We will spend considerable time with this last term.
As we discussed earlier, the problems with devices involve open systems.
If the boundaries are characterized by a local equilibrium, as is often the
case, the form of the density matrix may be obtained from the semi-classical
Fermi-Dirac distribution through the inverse transform of (28). To date, the
description of transport in devices has been confined to the cases where the
particles are free in two directions (one-dimensional transport through the
devices), which for specificity we take as the y and z directions. Hence, we
can set y = y' and z = z', so that for parabolic bands,

,\d CO sin [1A/2(x - X')/A](8)
p(xx,) = -(X _)1r(2) d + eXP( - ) - (8

where p - E/kBT, PF = EF/kBT, A•d = jh 2/2mkBT (which differs from the
thermal Debye length introduced earlier), all energies are measured from the
conduction band edge, and N, = r(q)/(2W2A\). In the limit that x -+ x', the
terms following the effective density of states become just the Fermi-Dirac
integral FI/2(PF). There are two limiting cases that may be easily analyzed.
In the high temperature limit, where Boltzmann statistics apply, (86) reduces
to the Gaussian

p(x, x') = N. exp (X X1)] 2 (87)

For a material such as GaAs, Ad at room temperature is 4.7 nm and the
effective density of states is about 4.4 x 1017 CM-3. For a nominal density
of 1017 Cn-3 , the Fermi level lies about 1.5kBT below the conduction band
edge, which is borderline on the applicability of the non-degenerate form.

The second case of interest is the low temperature limit, the so-called
quantum limit, at T = 0. Here, the Fermi level must lie in the conduction
band for any reasonable carrier density, and (86) becomes

p(x, x') = [ j1 .d[k,(X- ')1 (88)
[• 2 j k-F(x - x')
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where j1 (r) is a spherical Bessel function. In the limit x -- x', the second
fraction becomes simply ½. One of the earliest applications in which (88)
appeared was adiscussion by Bardeen,° in which he showed that the electron
density profile a distance x from an infinite potential barrier was given by

n(x) =no 3 jl (2kFX) (89)2 kFx ,x O,(9

and zero for x < 0. Oscillations in the density occur as a result of the
spherical Bessel function in (88). These oscillations depend upon the Fermi
wave vector, which in turn is a function of the density. These oscillations
do not occur in the non-degenerate limit of (87). A more exact calculation
that interpolates between these two limiting cases can be expected to show
a gradual damping of the oscillatory behavior as the temperature is raised.
This is shown in Fig. 12, where the density matrix is plotted (for a homo-
geneous system) as a function of the off-diagonal, or correlation, distance.
It may be seen that the oscillations are quite weak already at, 77 K, and do
not appear at 300 K. At higher densities, the oscillations will exist to higher
temperatures.

The above solutions provide some indication of what the density matrix
coordinate representation profiles are for the cases most closely related to
the standard classical equilibrium distribution functions. It may be antici-
pated, purely on physical grounds, that a problem examined using the classi-
cal distribution function in momentum space would yield the same physical
results, with respect to the observables, as obtained in the coordinate repre-
sentation. Consider, for example, the fact that the Boltzmann distribution
exp [-V(z)/kBT] (recall that V is an energy-the potential energy). If we
introduce a potential step of amplitude kBT ln(10), classical theory leads to
the conclusion that the density is reduced by a factor of 10 (assuming of
course that we are talking about allowed states in both regions). The same
basic result is obtained for the density matrix, but if the temperature is low,
so that the above oscillations are not damped, there is a more complex tran-
sition region between the two asymptotic potential values. This is shown in
Fig. 13 for GaAs at T = 0 and a doping of 101 crn-3 in the region with
the potential and an order of magnitude higher in the region in which the
potential is V(x) = 0.

A comparable situation with respect to potential energy and density oc-
curs when, instead of solving a non-self-consistent equation with a barrier,
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we solve the self-consistent equation for the spatially varying density. This
is shown in Fig. 14 for the same doping parameters as Fig. 13. The solution
region extends for 100 nm on either side of the abrupt change in the doping;
e.g., the potential is created by the abrupt change in doping profile. Again,
the solution is at T = 0. No attempt is made to develop the origin of the
carriers, rather the regime is chosen because the detailed values of the density
can be obtained independently. Here, the solution to the equation of motion
of the density matrix is provided self-consistently by also solving the Poisson
equation

V. [e(r)VV(r)] = -e' [p(r, r) - ND(r)] . (90)

There are a number of interesting features about the above figures. First,
if we concentrate on the shape of the density matrix in the uniform field
regions (away from the transition), the ripples in the density matrix indicate
that the sharper Fermi edge structure plays a pronounced role as the tem-
perature is lowered, as was pointed out above. In addition, the curvature of
the density matrix at the main diagonal, but in the direction normal to the
main diagonal, is more pronounced in the region with lower potential. This
directly relates to the (average) kinetic energy of the density through" 1

[ 0 8' ]
E(r)n(r) = lim r h2) p(rr') (91)

This should be compared with the same form in (78). As the temperature
is raised, the curvature will be decreased, as the particles sprea,: and thecor-
relation extends further. Moreover, increased density results in increased
curvature due to the increase of the average energy by the increase in the
Fermi energy.

A. Statistics of a Single Barrier

Consideration of the situation with a finite barrier offers similar insights.
For example, if the barrier is sufficiently wide (the characterization of suffi-
ciently wide will be discussed below), we expect that the density within the
interior of the barrier, far from the potential transitions, is describable by its
classical values, again assuming that this region remains classically allowed.
This case is shown in Fig. 15 for the same amplitude barrier as above; that is,
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the density is taken to be 10 1 8 crn-3 in the region far from the barrier and an
order of magnitude smaller (classically) within the barrier. However, when
the width of the barrier is reduced, there is an increase in the density in the
central region, which is also shown in Fig. 15(a). While the explanation of
the variation of the density through the barrier region is describable in terms
of the internal wave function reflections at the interfaces, along with the nor-
mal continuity of the wave functions and their derivatives, a more practical
description of the density variation may be found using the quantum poten-
tial UQ introduced in the previous section. By comparing the density matrix
solutions with the approximate Boltzmann-like solutions using the quantum
potential, it is found that a quite good description of the variation through
the barrier can be obtained.2 1 This is true for non-degenerate statistics for
sure, but a comparable equivalence has not yet been shown to be valid for
strongly-degenerate Fermi statistics. Even so, the results found below give
strong correlation to this interpretation.

The quantum potential is one of the more interesting concep'ts that can be
probed through simple solutions of the density matrix equation of motion. In
this sense, the density matrix can be solved exactly for simple barrier prob-
lems, and the quantum potential can then be calculated from the resulting
density through the use of e.g. (2). For example, the quantum potential
that results for the narrow barrier in Fig. 15 is shown in Fig. 16, along
with the non-self-consistent potential barrier. Within the barrier, where the
curvature of the density is positive, the quantum potential is negative and
the net result is that the effective potential energy seen by the electrons is
less than V(x). This results in a density that is larger than the classically
expected value. Immediately outside the barrier region, where the density
begins to increase (and has a negative curvature), the quantum potential is
positive and the density is below its classical value. In fact, in the center of
the barrier, the quantum potential for this example has reached a value that
almost cancels the barrier potential.

We can extend this sirnole evaluation approach to the case of a single
heterostructure barrier, such as occurs at the interface between GaAs and
GaAIAs which is modulation doped with the impurities residing in the lat-
ter material. In Fig. 17(a), the charge distribution, potential energy, and
quantum potential are shown for a 200 nm region, at T = 300K, in which
the interface lies at the center of this region. The doping level is taken to
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be 101 7cM-3 in the GaAs and 1018 cm- 3 for the GaAlAs (which is the region
100 < z < 200nm). In addition, the composition of the latter material is
assumed to be such that a 0.3 eV barrier is created by the offset of the two
conduction bands. It is easily seen that there is a reduction in the carrier
density in the GaAIAs near the interface, with a resulting formation of an
inversion layer in the GaAs adjacent to the interface. The peak in the den-
sity in the inversion layer is actually higher than the background doping of
the GaAIAs. It should be noted that the applied potential energy difference
across the interface has been chosen yield flat-band conditions, and is equal
to the height of the barrier plus the built-in potential of the "junction." For
the situation where the charge depletion occurs in the GaAlAs at the bet-
erobarrier interface, the amount of this depletion is such that the curvature
of the potential energy within the vicinity of the barrier is approximately
constant. As is consequence, when the height of the heterobarrier increases
there is an increase in the width of the depletion zone on the GaAlAs side
of the structure. Under flat-band conditions, where the net charge distri-
bution is zero, there is a corresponding increase in the charge on the GaAs
side. The quantum potential is negative on the GaAlAs side of the junction
and tends to give a charge density that is actually larger than the classical
value that would be expected. This also has the result of giving a slightly
lower value on the opposite side of the junction than what would normally
be expected. The small region of negative quantum potential on the GaAs
side of the junction is a consequence of oscillations in the density that arise
from the Fermi distribution.

B. Multiple-Barrier Structures

The simplest multiple-barrier structure is the double-barrier resonant-
tunneling diode, which was introduced previously as one of our proto-typical
quantum devices. The characteristic feature of the multiple-barrier structures
is the existence of quasi-bound states between each pair of barriers. (if there
are more than two barriers). The density between the barriers, as well as
within the barriers themselves, depends upon the potential height of the
barrier, the configuration (spatial variation) of the barrier, the doping levels,
as well as the size of the regions between the barriers. The value of the
quantum potential in the region between the barriers is approximately equal
to the energy of the lowest quasi-bound state, relative to the bottom of
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the conduction band.2 92 It has been shown previously that, in the absence
of current normal to the barriers, the total energy in this region is given by
E = V(z)+UQ(z). 2s7 We show this by considering a region in which two 5nm
barriers, 0.3eV high, separated by 5nm, are placed in the central part of the
simulation region (200nrm long). The doping is taken to be 1018cr-3, except
in a central 40nm region in which it is reduced by two orders of magnitude.
In Fig. 18, we plot the density distribution, the donor concentration, the
quantum potential, and the self-consistent potential. It may be seen that
the peak density in the center of the quantum well rises to a value that is
about 40% of that in the heavily-doped regions. The quantum potential, as
expected from the above discussion, is negative in the barriers and is positive
in the quantum well. For this results of this figure, the quantum potential
rises to approximately 84meV, which is quite near the computed value of
the quasi-bound state. (If the barriers are reduced to 200meV, the quantum
potential peak is reduced to about 70meV.) The connection of the quantum
potential to the quasi-bound state is an important feature of 'modeling with
the density matrix, as it allows an easy evaluation of bound energy levels in
complicated structures.

A second calculation may be used to further examine the expected results.
Here, the double-barrier structure above is placed into a 40nm quantum well,
with the depth of the well a variable. As the depth of this well was increased,
the quantum potential value in the central well remained independent of posi-
tion, but increased slightly in value due to the extra confinement effect of the
external (large) quantum well. When this larger quantum well was 150meV
deep, the quantum potential, and hence the quasi-bound level, increased to
abou" 94meV. For this condition, the various observables, and the quantum
potential are shown in Fig. 19. It may be seen from this figure that the
density between the two barriers has increased. Such an increase has at least
two origins: i) the increased density on either side of the barriers, due to the
confining effect of the larger well, and ii) the lowering of the lowering of the
quasi-bound state relative to the Fermi level in the heavily-doped regions.
The quantum well itself is delineated in the figure by the subsidiary offset of
the potential energy at the boundaries of the large quantum well.

Frensleyt m has used the single-particle density matrix to study a double-
barrier resonant tunneling diode, and also looked at the case with more built-
in barriers. The partial differential equation for the density matrix was solved
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using finite-difference techniques similar to those used to solve in conventional
semiocnductor devices. For the simulations, he treated the boundaries as
ohmic contacts. He finds that the methods of solution are easier than the
Wigner distribution fucntion (discussed in the next section), but are more
complicated to interpret, as may be inferred from the above discussion. He
assumed 50 nr barriers and well, and used a heterostructure offset of 0.39
eV. This work is the first step toward directly calculating the properties of
real quantum devices, and points out the importance of such simulations to
gain insight into the operation of the devices. Nevertheless, incorporation of
the ohmic boundary conditions greatly complicated the numerical simulation
algorithm, and the system was subject to the growth of numerically unstable
modes. This continues to be a problem. However, we point out below that
within the Wigner formulation there exists a methodology to overcome this
problem.

Groshev2" has also used the density matrix to simulate the Coulomb
blockade (single-electron tunneling) regime of the resonant tunneling struc-
ture. In this case, he used a three-dimensionally configured structure in an
attempt to identify lateral modes and fine structure in the tunneling current.
However, he reduced the problem to a pseudo-hopping formalism which did
not need to carefully study the spatial charge distribution self-consistently,
nor did it carefully examine the effects of the boundary conditions.

10. Dissipation and Current Flow

One conclusion we can draw from the above considerations is that, for
both the self-consistent and non-self-consistent solutions of the potential, the
solutions for the density and the potential sufficiently far from the interface
are basically the same as that expected using the classical Boltzmann equa-
tion. When current flows through the structure, the semi-classical approach
is usually pursued either by drift-diffusion or by hydrodynamic approaches,
or through more extensive simulation of the Boltzmann equation through en-
semble Monte Carlo procedures.11 -i° Here, we want to begin to understand
how current transport in quantum structures can be treated via the density
matrix equations of motion. For cases where the ends of the "device" are
heavily-doped n+ regions, boundary conditions on the numerical procedures
are formulated to assure that the numbers of particles entering the "cathode"
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end of the device is equal to the number of particles leaving the "anode" end
of the device (for electron flow). An alternative schema is to adopt proce-
dures which incorporate sufficient dissipation in these boundary regions to
thermalize the carriers to a near-equilibrium distribution. This latter schema
should yield the same results for the charge and potential within the active
portion of the device, but the major problem is how to deal with the dis-
sipation processes within the simulations. To date, only very approximate
schemes have been adopted, but it must be emphasized that some procedure
for treating the dissipation must be adopted if transport in such devices is to
be discussed sensibly. A low-order (Born approximation) perturbation treat-
ment of phonon interaction in a homogeneous system has been treated with
the density matrix by Argyres.2" Similar approaches have been used for het-
erostructures.2 A more extensive renormalized phonon treatment has also
been treated for homogeneous systems.2" We will follow a somewhat dif-
ferent approach here, in order to try to develop an effective approach for
detailed device simulations.

Following Caldeira and Leggett, 1(0-m we consider a system A interacting
with a second system R (which is taken normally to be the reservoir) and
described by the Hamiltonian HT = H + HR + H1, where the latter three
terms describe system A, the reservoir and the interaction between the two.
Clearly, we can follow the approach of Sec. 5.c, and define the projection
operator as being a trace over the reservoir variables, so that the reduced
density matrix is described by12

pd(r, r', t) = Pp(r, r', X, X', t) = TrxX, {p(r, r', X, X', t)}, (92)

where X, X' are the coordinates of the reservoir. In this approach, we do not
need detailed information about the reservoirs, only information about their
interactions with, and influence on, the electron system in the active device
region. The method that is normally invoked is to develop a perturbation
theory for the interaction and dissipation that follows from both initernal dis-
sipative processes and boundary effects (one such is surface-roughness scat-
tering; another appears as changed boundary conditions which will be heavily
used in the next section on Wigner functions). The equation of motion for the
density matrix (22) is rewritten to include a scattering contribution, which
must be evaluated, which is the next task.

In determining the form of the perturbation theory result, one is faced
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with a variety of approaches to take. One approach which encourages an intu-
itive prescription is to simply determine how standard Boltzmann scattering
terms would look in the appropriate coordinate representation. While this
will lose information regarding short-time events and build-up of the scatter-
ing process, much insight is gained into the form of scattering to low-order
in perturbation theory. In the Boltzmann picture, when Fermi statistics can
be safely ignored, the scattering rate is simply

Of(r, k) dIe= ' J d3lk {f(r, k)W(r, k, k') - f(r, k')W(r, k', k)}

(93)
where the scattering processes are assumed to occur locally in space and
W(r, k, k') is the standard Fermi-golden-rule transition probability. Our ap-
proach then assumes that f(r, k) replaced in the quantum treatment by a
Wigner distribution and the inverse of the Weyl transform (28) is used as

p(R.+! R s!) = -I d3kfw(r, k)ek 4  (94)
2(3 2

where the reduced coordinates (26) are used. After some simple manipula-
tions, the scattering term (93) becomes

' =u, - -4"8pR)I d =e 4T JGK I dk fdC {fw(r, k)e tk8 W(r, le, k) [1-C(c'k4
(95)where p(R,) = p(R + ,.R -

The structure of the scattering term in the coordinate representation may
now be obtained from (95), at least as the scattering is derived to lowest order
in the Boltzmann scattering framework. For scattering which is mainly local
in space, the difference coordinate s is small, and the second term in the
square brackets can be expanded in a Taylor series, retaining only the leading
non-vanishing term, for which

P( I - - is d3k fId3le fw(rk)ek.W(r, le, k)(k- k)}
at dies 4V3J J'''

(96)
It may be recognized, from standard seni-classical treatment of scattering
processes,20 that the integration over k' produces a momentum relaxation
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rate. Introducing (28), and integrating once by parts on the s coordinate,
the dissipation rate can be rewritten as

= -s'•. f dkf/?s'p(R*)e_,k.(s_)r(r,k) . (97)

We note that the integration over k incorporates the rapidly varying expo-
nential, which in turn is approximately a delta function on the difference in
the nonlocal variables, so that one really achieves an average value of the
momentum relaxation rate, and

disR.+ I - -r(r)s. a-p(R+) . (98)

This term can now be added to the Liouville equation (22) on the right-
hand side (after multiplying by ih, of course). This form of the dissipative
term has also been discussed by Dekker,29 ' as well as in the work cited ear-
lier.2m Density matrix algorithms for modeling devices have been reported
that incorporate the dissipative contributions developed here.m Because of
numerical difficulties at higher bias levels, modifications to the scattering
term were introduced that go beyond the approximations introduced in ar-
riving at (98). We turn to these next.

One may note that it is possible to rewrite the dissipative term by noting
that the current density itself is a function of the non-local variable, through
the fact that

j(r,r)-- ( Or rr'h p(r,r m Os ' (99)

where we have used the coordinate transformation (26). With this form of
the current, the dissipation term can now be rewritten asOpR)I im s

Op( ) = -- r(R)s-j(R +- ,R -- ). (100)at Idins T

The current term can now be rewritten in terms of a velocity, under the as-
sumption that this local velocity incorporates any diffusion effects directly,
which is a local quantity of the average (center-of-mass) coordinate, or j(r, r') ;
v(R)p(r, r'). Further, it may be noted that the relaxation rate plays a nearly

65



semi-classical role in near equilibrium, in that the potential drop between
arty two points can be described in terms of this dissipation and the velocity,
much as a quasi-Fermi level is introduced, or

ro

EF(r) - EF(r) I d3 u v(u)mrL(u). (101)

r

For small values of s, this latter equation is approximately -s- v(R)mr(R),
and the dissipative term finally becomes

ap(R + -,R--) is, 2 = [EF(r) - EF(r')] p(R + R - (102)

& Idi~ss

so that the dissipative term has precisely the same form as the potential
driving term, but with the potentials replaced by the (quasi-) Fermi levels.
This has the result of creating a dissipative term on the right-hand side of
(22) that is still real. Side-by-side calculations at low values of bias yield
identical results.

The manipulations associated with the above discussion were predicated
upon finding a means of computing the current. In fact, a definition of the
current was introduced in arriving at the final form (102). In the computa-
tions that follow, an assumption is made that the carriers at the upstream
boundary are in local equilibrium and that the distributions are either a
displaced Maxwellian or a displaced Fermi-Dirac distribution. This implies
that, at the upstream boundary, the zero current quantum density matrix is
replaced by p(r, r) exp v(R)-. Since the current is introduced as
a boundary condition to the problem, a prescription is necessary to find its
value. This leads to an auxiliary condition.

To find the value of the current used in the Liouville equation for the
density matrix, moments of the revised form of (22) are taken in the same
sense as those of Sec. 8. Under time-independent conditions, the momentum
balance equation (77) can be written as

8E Ov
2-M + 8V-p(R) + mr(R)v(R)p(R) = 0, (103)

where E is the total energy, kinetic plus potential, and not the energy per
particle as indicated in (78). Under the assumption of current continuity, and
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the condition that the term v(R)p(R) is independent of distance (Kirchoff's
current law), and the condition that the total energy of the entering and
exiting carriers are equal, current is then obtained from the condition

i( L -dxlaY

fX = fd-rE (x') 1 (104)

where we have restricted the considerations to one spatial dimension.
The simplest type of calculation to deal with is that of a free particle.

For this case, with current introduced as a boundary condition through the
above approach, the resulting density matrix is complex. The real part is
symmetric in s, the distance from the principle diagonal. On the other hand,
the complex part (which leads to the current) is anti-symmetric about the
principal diagonal. In Fig. 20, we plot the real and imaginary parts of the
density matrix for a 200nm region of GaAs, doped to a level of 1017 cr- 3 . A
small bias of 10meV has been applied across this length (a field of 500 V/cm).
It has been assumed that P corresponds to a mobility of 2580cm 2/Vsor a
scattering time of 0.1 picosecond. The mean carrier velocity is f-und to be
about 1.3 x 106cm/s. Increasing the applied bias results in ax. .-crease in
the velocity and an increase in the kinetic energy of the carriers, the latter
of which manifests itself as increased curvature of the imaginary part of the
density matrix in the correlation direction (normal to the principal diagonal).

Let us now turn to a non-uniform sample in which the mobility varies
with position in the structure. The material is again taken to be GaAs,
with the parameters discussed in the previous paragraph for Fig. 20. Here,
however, the scattering rate will be greatly increased over the central 2nm
of the structure. On the basis of the above discussion, this decrease in the
scattering time will result in a sharp drop in the quasi-Fermi level over this
region. The density cannot change as rapidly, and has a characteristic "De-
bye" length over which it changes. The density variation, the quasi-Fermi
level, and the potential energy are shown in Fig. 21 for two cases correspond-
ing to an increase of scattering rate by one, and two, orders of magnitude
(actually the background scattering rate also is varied in the second). In Fig.
22, the opposite results, for a central region with lower scattering rate, are
shown. For the case where the cladding region has a higher mobility (lower
scattering rate), most of the potential drop is across the central, low mobility
region (Fig. 21). Conversely, when the cladding region has a lower mobility
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than the central region, most of the potential drop is across the central region
(Fig. 22). Of course, these results are clearly expected from classical consid-
erations. What is not usually appreciated is that both cases lead to strong
variations in the local, self-consistent density and in the resulting quasi-Fermi
levels. It is these regions, where the density varies considerably from the nor-
mal doping levels that we expect to see the largest quantum-induced changes
in the results.

We now turn to more device-like simulations. A single-barrier tunneling
structure is considered. The basic structure is taken to be GaAs with nominal
doping of 101Scrn- 3 . A central 3Onm region is assumed to be unintentionally
doped. A barrier with 0.3eV height, and lonm width, is placed in the center
of the lightly-doped region. The scattering time is assumed to be constant
throughout the structure at a value of 0.1 ps. In Fig. 23, the potential
and charge density are shown for a variety of applied bias levels, ranging
from 0 to 0.4 eV. The bias is applied at the collector boundary (the zero
of potential is maintained at the source end). A typical potential well forms
on the source side of the barrier as the bias is increased (we will see similar
behavior in the DBRTD of the next section). In all cases, the potential
decreases essentially linearly across the barrier, which indicates that there is
little charge accumulation (or depletion) in the barrier itself. On the other
hand, there is significant charge accumulation on the source side of the barrier
at the higher bias levels. In Fig. 24, the quasi-Fermi level (relative to the
equilibrium Fermi level) is shown for the same bias levels. Most of the change
in the quasi-Fermi level occurs within the barrier, and on the collector side of
the barrier. It matches the applied bias well at the boundaries, as required for
consistency. The current-voltage curve for this structure shows the expected
exponential behavior, although the charge accumulation modifies slightly the
pure exponential behavior of simple theory. The shape of this latter curve
is also sensitive to the exact dimensions of the tunneling barrier, since this
modifies the fraction of the potential which is dropped across the barrier.

11. Further Considerations on the Density Matrix

A. An Alternative Approach to the Density Matrix

An alternative approach to dealing with transport through use of the
density matrix has been proposed by lafrate and Krieger. 27 9 These authors
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considered both uniform and nonuniform fields in an approach that allowed
them to examine transport on a short-time scale. For example, in a discussion
of electrons interacting with impurities and a homogeneous time-dependent
electric field in the momentum representation, they used first-order time-
dependent perturbation theory to obtain

I t

p(k, W, t) = ;h I di' (k' IH'(t')I k) [p(k, k,t) - p(k',k',t)]
to tJi}

x exp f dt"[E(k')-- E(k)]} (105)
t

which contains several important features. First, the basis functions used in
obtaining this equation are the instantaneous eigenfunctions of the Hamilto-
nian; i.e.,

1
HO= 1 (p-eeA).(p-eA)OP=Eo,, (106)

where

E0o(K,) 0 h2 K- - (K, k(K,t) =K- A (107)

and
E(K, t) = Eo(K, t) + (K IHI K) . (108)

Second, the off-diagonal elements of the energy in the last equation and the
density matrix itself are expressed only in terms of the perturbed diagonal
elements. Thus, initial conditions are not subject to the usual condition
of an initial equilibrium state. The first-order perturbed density matrix in
the momentum representation was used to obtain the time rate of change of
the diagonal components themselves. The exponential term, which is field-
and time-dependent, permits a discussion of short-time behavior as well as
the long-time energy conserving delta-function behavior representative of the
Fermi golden rule. The intra-collisional field effect enters at this point. These
authors also obtained the Liouville equation in an accelerated Bloch repre-
sentation, where it was demonstrated that the major result is to introduce
a term in the perturbing matrix elements that connects states of the same
general momentum K value, but with different band indices, thus leading to
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a contribution from interband tunneling. It is expected that, as the Wigner
function formalism provides an initial form for the modification of the equa-
tion of motion for the density matrix, this approach will find application to
the examination of transport on the short-time scale.

The situation with nonuniform fields is different, and was treated by these
authors accordingly. Here, they examine solutions specifically to the Liouville
equation in the Wannier representation; a representation in localized wave
functions in real space. This representation bears close resemblance in form
to the density matrix in the coordinate representation. The transformation
to the Wannier representation is

(xlk) = , (xln) (nlk) = E n(x)On(k), (109)
n n

where On(k) is the Fourier transform of the coordinate wave function 0,,(x).
Here, (xik) is the Wannier function satisfying the orthonormality conditions

E (nik) (kim) = S,.,, E (nix) (xlm) = b..,, E (kim) (mtk') = 6(k-k').
k X n

(110)
The density matrix may then be transformed into the Wannier representation
as

(x IpI x') = (xln) (npm) (mix') , (111)
n~wt

where (nipim) is the density matrix in the Wannier representation (it should
be pointed out this this would be true for any arbitrary set of coordinate
representation wave functions, but here we have asserted that these wave
functions (xlm) are the localized Wannier wave functions). Since the basis
functions satisfy the Schr6dinger equation, but with the proviso that the
energy is now a matrix quantity, the Wannier functions satisfy

-h2V2 (xln) = E E(m, n) (xlm) .(112)

Then, the single-band equation of motion (with the short-hand Pnm = (niplm))
is

A Zp. E (n, m')pn,,n - pmminE(m', m)aq t MI

+ VmI,,Pmm - Pnm,Vmn, . (113)
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This latter equation was discussed by Krieger and lafrate2
79 with a band

index included.
As the density matrix in the coordinate representation with a finite lattice

is indexed by the lattice points, it may be regarded as a pseudo-coordinate
representation. It is intriguing to compare the structure of (113) to the Li-
ouville equation itself in the coordinate representation. First, we note that
the energy operator in the coordinate representation is a second derivative
and, in establishing its contribution, difference equations are implemented
which generally involve at most nearest and second-nearest neighbors. The
potential energy contributions in this representation do not involve a sum-
mation over the coordinates, but are local in the site. Thus, (113) differs
from the Liouville equation in the treatment of the potential terms, just as
arises in the Wigner representation. The density matrix in the Wannier rep-
resentation, particularly for well localized values of the momentum, will likely
involve significant contributions from lattice sites well removed from that of
interest. On the other hand, where the density is well localiz&I, such as in a
quantum well, the summation may well involve only a few nearest-neighbor
terms. As usual, the choice of the best representation is one of convenience
to the problem at hand.

Rather than treat the perturbation of the density matrix in a specific
representation, another approach-K° is to deal with perturbation about the
equilibrium density operator itself. Here, we represent Ho(t) as the unper-
turbed Hamiltonian, so that the field and corresponding perturbations are
initialized at t = 0. We represent the perturbing operator as V(t), in analogy
with (35). Then, to second order in the expansion of the unitary perturbation
operator, the density matrix can be written as

p(t) = po(t) + pI(t) + p2(t), (114)

where
Po() = Uo(t, to)po(to)Uo(to, t)

t

p1(t) = f dt' [V(t', 1), po(t)]
to

dt tt" (t' t) ttt

P2(t) - tf dt' I dt"V(t", t) V(t', i)po(t) + POWi f dI'JtVit)t"
Ito 9o to to
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- dt'V(t', t)po(t) dt'V(tIt) (115)
to to

Here, we introduced the two-time potential

V(t',t) = Uo(t',t)V(0)Uo(t~t1) , (116)

and the unitary operator

Uo(t', t) = exp J Ho(t")dt (117)

This approach is quite useful and has led to the development of quasi-
equilibrium density operators in which the equilibrium density matrix is
parameterized much like a drifted Maxwellian. The approach, however, is
largely limited to those problems in which linear response around a quasi-
equilibrium steady state is possible. It is not at all clear that this non-
renormalized approach is applicable in far-from-equilibrium situations.

B. Differential Capacitance

The measurement of the differential capacitance as a function of the bias
potential permits a reconstruction of the density profile in the heterostructure
from a standard textbook formula

n(x) = [ d() , (118)

where here the position x is to be interpreted as an average position defined
through the capacitance z = e/C, and C is the specific capacitance per unit
area. The extrapolated value of C- 2 (extrapolated back to the intercept
of the voltage axis) gives a value of potential that may be interpreted as
the offset voltage for a simple heterostructure configuration. This leads us
to conclude that a single measurement of capacitance as a function of bias
voltage determines both the density and the heterostructure offset voltage.

As a result of the above considerations, the measurements of CV in sim-
ple systems have also included a numerical component involving the solution
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of Poisson's equation for a density distribution computed for a specific het-
erostructuboconfiguration, from which computed CV characteristics may be
obtained. The theoretical structure providing the closest fit between the
calculated and measured CV relatiorships is often pronounced as the one
representing the actual heterostructure. The degree to which such a mea-
surement, and the fit to the data, is reliable is dependent upon: (a) the
fundamental equations chosen to represent the structure (quantum struc-
tures require equations describing quantum transport and not the classical
equivalent); (b) the statistics, either Boltzmann or Fermi-Dirac statistics,
can influence the actual value of the intercept on the voltage axis to first
order; (c) traps and unusual doping contributions (such as planar doping);
(d) specific quantum boundary conditions. In short, the most representative
calculation is that with the most physics. Those equations least likely to
inspire confidence are the usud classical ones that are often used: the drift
and diffusion equations. The equations most likely to inspire confidence are
those yielding the quantum distribution function, such as the density matrix
or the Wigner distribution.

Let us consider a typical calculation to illustrate the point. The quantum
approach is to couple the Liouville equation for the density matrix to the
Poisson equation and solve the overall structure self-consistently. In the
absence of any bias, the CV relationship was obtained for a 200 nr long
simulation region, nominally doped to 101s Cr-n 3 , and with a 15 nm thick,
300 meV barrier located in the center of a 30 urn non-intentionally doped
region. The density and potential variation are shown in Fig. 25. The
capacitance is obtained via an approach proposed by Kr~mer et aL30 1 From
Poisson's equation, the change in the charge density bp(x) that arises as a
consequence of the change in potential 6V(L) at the end of the sample x = L
yields a net total charge change in the structure (the notation corresponds
to Fig. 25, where z = 0 is taken in the center of the structure)

L

6Q(L) = -e J dx6p(x). (119)

The differential capacitance is then given by

C(V) = eQ(L) e (120)
eeSV(L) -e
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and this allows the reconstruction of the density from3W

i = 2nrej dx,)t (121)

where P = l/ksT, as previously, LD is the Debye length (L2 = e/fee2nr,.),
and nvq is a reference density usually taken at a boundary where it should
be well known.

For a uniform structure, we expect that fi = nr,,. In the inset of Fig.
26, we plot the quantity i 2 /LJ2,6 1/C 2 as a function of the bias voltage
V(L)." The density inferred from this procedure (dotted curve) is plotted
in the main part of Fig. 26 for the central region of the structure shown in
Fig. 25. The straight lines in the inset of the figure illustrate the expectation
for a uniformly doped structure in the absence of a heterostructure barrier.
The extrapolated bias intercept of the lower straight line is twice the mean
energy of the entering carriers. The variation in slope at the ceiter of the
figure is a signature of the presence of the barrier. Also shown (solid curve) is
the actual charge density distribution obtained from a solution of the density
matrix. Clearly, the inferred value of ii(i) in the vicinity of the barrier is
at best an approximation to the actual charge density, and the minimum
inferred density is somewhat greater than the actual minimum density. The
asymmetry in the inferred density has been discussed previously.m Still, it
is significant that the structure and widtý ' 'he barrier heterostructure can
be obtained from this measurement.

IV. Modeling with the Wigner Distribution

The Wigner formalism offers many advantages for quantum modeling.
First, it is a phase-space description, similar to the semi-classical Boltzmann
equation, which may be seen by comparing (1) and (29) in the limit of small
applied fields. Moreover, in the Wigner formalism, scattering is a local (in
space) phenomenon.46 Because of the phase-space nature of the distribution,
it is conceptually possible to use the correspondence principle to determine
where quantum corrections enter a problem. At the boundaries (the con-
tacts), the phase-space distribution permits separation of the incoming and
outgoing components of the distribution, as we will see in the next sec-
tion, and this permits modeling an ideal contact, and hence an open system.
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However, there are problems at the outgoing contact, which will be discussed
below. Still, another advantage to the Wigner formalism is that the Wigner
function itself is purely real, which simplifies some calculations and the inter-
pretation of the results. By coupling the Wigner equation of motion (30) to
Poisson's equation, we can obtain a fully self-consistent approach to modeling
various devices.

Wigner functions have been used extensively in the field of quantum op-
tics, where it has been used to describe coherence of optical fields and to
describe polarization and transient superposition effects.34 Quite naturally,
this description has been applied to finding quantum-mechanical solutions to
the laser master equation (the Fokker-Planck equationaw) and for describ-
ing quantum noise in lasers." More recently, Wigner functions have been
applied to optical systems and signals, where they provide a link between
Fourier optics and geometrical optics.W s Two-dimensional Wigner opti-
cal distributions have been generated," as well as slices of four-dimensional
Wigner optical distributions.310 The Wigner-function description of optical
signals has been investigated for use in elementary pattern recognition as
well.31 ' From this, it may be seen that the Wigner formalism is especially
adapted to displaying the roles of phase interference and quantum resonances.

Numerous early work expounded on the virtues of the Wigner formal-
ism for quantum transport with an eye toward the advantages offered by a
phase-space representation.30.3' 46 ,1ss Indeed, there were early attempts to
model the transport in DBRTDs with the Wigner formalism.312 In this sec-
tion, we will review the development of the Wigner function and its equation
of motion. The roles of nonlocality and correlation in the function will be
discussed. One important point is the need to achieve a correct initial dis-
tribution, as the time development of (30) requires a correct initial state.

In Sec. 5b, the Wigner distribution function was described in terms of a
density matrix formulated in the difference coordinates (26), and then Fourier
transformed on the difference variable s as in (28). It is easily seen from (28)
that there is no requirement in the definition of the Wigner function that
requires it to be a positive quantity. For this reason, the Wigner function
interpretation as a probability distribution must be handled carefully.313 Nev-
ertheless, it is a quite useful tool in the study of quantum transport.31 4 The
issue of the non-locality of the Wigner distribution must be examined care-
fully, as it has value in the regions in which the density matrix, and the wave
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functions may not have support. Consider Fig. 27, from which it is evi-
dent that a distribution defined in the transformed coordinates (26) may be
nonzero at positions R where the wave functions themselves are zero. This
is an important point, and it illustrates the need to very carefully model the
solutions to (30). This problem will arise as a need to extend the range of
the Wigner function beyond that of the simple device under study.

12. Methods of Solving the Equations

There are many approaches to modeling semiconductor devices, even af-
ter the equations of motion have been agreed upon. This is also true with
Wigner functions, in that choices of which equations to use for modeling:
the steady-state equations or the time-dependent equation of motion (30).
In this review, we will concentrate on solutions that are obtained from the
time-dependent equation of motion, as many of the physical properties of
interest are related to the time evolution of the device behavior. Even then,
there are many methods of choosing discretization schemes and numerical so-
lution techniques. The discussion here will focus upon a successful approach
used by one of the present authors to study the DBRTD, although other
approaches will be discussed as we come upon their influence.

A. The Initial State

A serious consideration of the Wigner formalism is the entry of nonlocal
quantum mechanical effects through the inherently nonlocal potential driving
function of (31) in (30). In the limit of slow variations, only the linear term
coupling the first derivative of the potential, the force, to the derivative of the
Wigner function with respect to the momentum remains important, and this
is the semi-classical equivalent that arises in (1). If the potential has no terms
of higher order than quadratic in the position, this semi-classical term is the
only contribution, and, in fact, the Wigner equation of motion (30) will not
reproduce the known quantization in a harmonic oscillator potential. A cor-
rect quantum-mechanical steady-state solution to the problem may be found
by specifying the correct boundary conditions and solving (30) in the absence
of the time-derivative term, although there are subtleties in this approach,
not the least of which is that it is known to fail in the harmonic oscillator
potential.3 15 One further problem is that the correct boundary conditions
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presuppose knowledge of the state of the system both internally and at the
boundaries, as the latter are a function of the former through the nonlocal-
ity of the internal potential. Thus, knowledge of the boundary conditions
presupposes a full knowledge of the solution being sought, even without the
equation of motion.

In order to include all orders of quantum corrections, one of two things
can be done. The first is to extend the computational domain sufficiently fax
from the source of the quantum effects that the system is classical, so that a
classical distribution can be used at the boundaries. It has been shown that
quantum corrections "heal" over several thermal de Broglie wavelengths.45

In a reasonable GaAs device at 300 K, this length is nearly 100 nm. The
second approach is to develop the adjoint equation for the Wigner function
that corresponds to the Fourier transform, in the difference coordinate, of
(25) in the time domain (as opposed to the inverse temperature domain).1 97

We pursue a variant of this approach, by actually computing the density
matrix for the initial condition, and then transforming this latter quantity
into the Wigner domain.

If the potential approaches a constant, uniform value as R -- -oo (where
the device is supposed to be located near the origin), then the basis states at
large distances are plane waves (in the effective mass approximation). In one
dimension, we assume that V(x) = V- for z < x- and V(z) = V+ for z >
z+, where zx describe the transition regions beyond which the potential is
uniform. For equilibrium situations, in which V+ = V-, this gives scattering
states incident from the left, with k > 0,

4Wk() = --- [i + r(k)e-ikz] (122)

for z < x-, and

k(X) - t(k)e'kx (123)

for X > z+, where t(k) is the transmission coefficient and r(k) is the reflection*

coefficient. In a similar manner, states incident from the right are defined by

1bk(r) = -- [e- + r(k)e' ik] (124)

for x > x+, and

77k)&- (125)
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for x < x-. The density matrix is then defined, in the semi-classical equilib-
rium regions of the boundaries, as

p(x,') = +dkk(X) (x')f(Ek), (126)

where Z is the partition function, the sum over n is over bound states which
may be localized at some point, Ek is the energy of a scattering state, and
f(E) is the Fermi-Dirac distribution function.

From an unnormalized basis function, and using translation matrices, an
unnormalized state may be computed on the entire domain. These states
are normalized by applying scattering theory, in which wave functions in the
presence of a scatterer are compared to those in a reference space. These axe
related through the Lippmann-Schwinger equation. A useful consequence
of this equation is that the scattering states satisfy precisely the same or-
thonormality relations as unperturbed states. 45 ,3 16 Each state cpntributes
to the density matrix according to the thermal distribution function f(E).
The partition function is found by considering the limit of x -- x-, also a
consequence of the normalization conditions. It is defined to be

Z- = 2firýv lim p(x, x). (127)

An algorithm for computing the density matrix is thus available." A set
of points {r} is chosen at which the density matrix is desired to be known.
The potential is then taken to be piece-wise constant between the points
(approximating a smooth function in the normal finite difference scheme).
Energies are randomly sampled according to the Fermi-Dirac distribution
function, and each energy gives a wave vector for which a left-incident and
a right-incident scattering state is formed. The states are translated and
normalized and their contributions added to the density matrix. The density
matrix is then normalized with the partition function. This process can be
continued by computing a new potential distribution from the new charge
distribution using Poisson's equation, and the process iterated for a self-
consistent equilibrium state. The resultant density matrix is then Fourier
transformed to yield the Wigner distribution function. In fact, this is the
procedure that was followed to obtain the equilibrium Wigner distribution for
the DBRTD shown in Fig. 7 above. The Wigner distribution is characterized
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by a thermal distribution far from the barriers. The oscillations near the
barriers are a result of the quantum repulsion from the barriers, which causes
a depletion of carriers in this region, although this is not a depletion in the
normal classical sense. This quantum repulsion is, in a sense, complementary
to barrier penetration: just as a nonzero density penetrates a finite distance
into a classically forbidden region, a density deficit exists a finite distance
into a classically allowed region, so that the total charge in the device is that
necessary to maintain overall charge neutrality.

B. Numerical Discretization and Solutions

The Wigner function equation of motion (30) may be evaluated on a
two-dimensional discretized grid for the position and the momentum for one
dimension. In general, the Wigner function is a continuous function of 2n
dimensions in n-dimensional space. Here, we will treat primarily the one-
dimensional solutions, although other simulations will be discussed later. We
consider that the modeled region exists from 0 < x (= R) < L. The modeled
region is divided into a spatial mesh (using a finite-difference approach) of
mesh size Am chosen so that the features of interest, such as potential bar-
riers, are adequately represented by many grid points. Since the potential
in a DBRTD (or even a single-barrier diode) varies over a distance of a few
monolayers, an appropriate spatial mesh Am is of the order of a unit cell of
the material being utilized, but typically of the order of 0.25 nm. The mesh
size for the momentum variable is found by considering the Fourier transform
in the Wigner function equation of motion. the discrete Wigner function is
periodic in momentum, due to the discretization of the spatial variable, with
a period of hir/(Az). (For convenience, the wave vector k = p/h is used.)
The variation in momentum is thus confined to the lowest zone of this period
in momentum space, which is then discretized into a convenient number of
meshes, while assuring that the CPW criterion for linear response317

A m < (128)

where v is the highest velocity in the problem, is met for the time evolution.

The Wigner equation of motion (30) is then discretized using a Lax-
Wendroff explicit time differencing. 31 8 This method retains the second-order
terms in the Taylor expansion of f(f .... vhich introduces a second-order
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spatial difference term into the equation of motion. This second-order term
represents an artificial diffusion, which counteracts spurious numerical diffu-
sion that always arises from the first-order terms.3 12 This approach has proven
to yield very stable solutions for device simulation of the DBRTD, 3 1 9 3 20 and
provides a relatively direct approach to iterating the temporal part of the
equation. However, other approaches have also been suggested. Ringhofer
has suggested using a spectral method that also is found to give good con-
vergence.3 21 Arnold, and co-workers, 32 have utilized an operator splitting
method, in which the time step is split into two portions. If w. and w.+,
are the approximations to the Wigner distribution function f(t) at t,. and
t,, = t. + At, and we have two operators A and B, then one first solves the
iteration (in the range t,, _ t:5 t,,+,)

a= Au, u(t3 ) = w , w+i = u(t.+1 ), (129)

and techniques such as the Lax-Wendroff approach can be used here. Then,
the iteration

OuS= Bu , u(ti) = WD+, , W.+l = u(t•,,) (130)

is solved. Obviously, the overall operator present in (30) (the second and
third terms) are split to form the operators A and B, representing the spa-
tial gradient term and the potential term, respectively. Arnold and Nierm
have also suggested a novel particle flow procedure, very similar to a Monte
Carlo simulation for transport, to solve directly (30). This approach bears
a similarity to an earlier suggestion of a trajectory approach to solving this
equation in DBRTDs.s24 However, in our simulation of the DBRTD, 3s0 ade-
quate convergence was found with the direct Lax-Wendroff approach.

The spatial variations are handled by noting that each point in the dis-
cretized space has a characteristic direction, which describes the direction
of probability flow away from that point. In a phase-space representation,
the velocity which defines propagation is directly proportional to the mo-
mentum. For positive momentum, propagation is in the positive z direction.
Conversely, for negative momentum, propagation is in the negative z direc-
tion. Thus, it may be observed that the discretized Wigner function consists
of slices of the mesh, over which the momentum is constant. These slices
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can be viewed as local systems of equations which are coupled by the poten-
tial term of (30). It is this view that leads to the operator-splitting method
discussed above. However, here we note that for positive momentum, infor-
mation flows into the slice from the boundary at x = 0, and moves toward
the boundary at x = L. For negative momentum, the opposite direction of
flow is present. Recognition of these characteristic directions solves an intrin-
sic problem with the Lax-Wendroff scheme. A second-order finite-difference
term at point x, involves the points zi- 1 and xi+,. In the interior of the
device, this creates no problem, nor does it create a problem at the incoming
boundary where the boundary distribution is specified. The problem occurs
at the outgoing boundary, where the exit distribution is not know and cannot
be specified without over-constraining the solution to the differential equa-
tion. The solution to this dilemma is to use first-order upwind differencing 1ss
to propagate the function ý.o the outgoing boundary along the characteristic
direction, which is

.f = f(xi) - fxi-1) if k(xi) > 0, (131)
Ox Ax

and
Of _ f(x,+i) - f(Xi) if k(x,) < 0. (132)FX Ax '

The stability of this overall numerical approach has been checked first by
using stationary distributions, and following them for picoseconds of time
to assure that no numerical instability creeps into the solution. Secondly, a
Gaussian wave packet was propagated through a single tunneling barrier until
well formed transmitted and reflected wave packets existed; then, the time
variable was reversed and the solution propagated until the latter two wave
packets recombined into a single wave packet. Any spurious contribution
from numerical instability would be expected to destroy the phase memory in
the problem and to lead to a two wave packet tunneling problem which would
have produced four output packets.Y All of this was found to be sensitive
to the actual boundary conditions used in the problem, which are described
next. A somewhat different approach, in which the Wigner distribution is
expanded in a set of Wannier functions, leading to a lattice Wigner function,
has been suggested32 and leads to similar stability of the simulation.32 7

In Fig. 28, we show a Gaussian wave packet interacting with a DBRTD
potential. The barriers in this case are 3 nm thick, and 0.3 eV high, and
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are separated by a 5 nm quantum well. In Fig. 28(a), the initial wave
packet is shown just as it begins to interact with the barriers (the shaded

portions of the spatial axis). In Fig 28(b), the majority of the wave packet
has reflected from the barrier, while a small portion has tunneled through
the barriers. Finally, in Fig. 28(c), most of the wave packet has reflected
from the barrier and has propagated away from the interaction region. Of
particular note in this latter figure is the rapidly varying oscillating structure
along the k = 0 axis. This structure contains the important correlation
information between the two outgoing (transmitted and reflected) packets.
As long as this information is properly retained (and is convergent in the
simulation scheme), the system has time-reversal symmetry as required in
the absence of dissipation. When this correlation information is damped,
or erased, the original wave packet can no longer be recovered by reversing
the time propagation. 3 s Any dissipative processes will act to reduce this
correlation, and thus destroy reversibility, bringing a clearer understanding
of what random-phase approximations mean in this system.

C. Boundary Conditions for the Simulation

Simulation of a real device includes some model of the interface between
the interior simulation region and the supposed boundary/contact layer. At
the very minimum, the external circuit consists of a battery which fixes
the potential across the device, and wires which carry the current from the
battery to the device. These circuit parameters are usually included in device
simulations as boundary conditions. In many models, the contact serves as an
infinite reservoir of thermally distributed carriers.7 5 This reservoir maintains
a fixed distribution at the contact where ti, particles enter the simulation
domain, and impacts the simulation of such open quantum structuresY2 9

Conditions at the contact/boundary must be consistent with physical reality.
If a current is flowing through the device, current continuity requires that an
identical current be flowing through the external circuit. This implies that
the external circuit, and thus the contact regime, must be characterized by
some distribution which relects current flow, such as a shifted Fermi-Dirac
distribution.

In the flow field discussion above, there are left and right boundaries,
at x = 0 and x = L, respectively. Mathematical constraints permit us to
specify only one boundary, however (the linear term is only first-order in the
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spatial derivative). As discussed earlier, the model may be thought of as a

coupled set of systems, each of which is a slice in momentum space. Each
of these momentum slices has a boundary, or contact, from which electrons
enter the slice, and they leave the slice from the opposite boundary. The
"entering" contact is constrained by the current. Just inside the device a
current exists. Because an identical current must be present in the contact,
and the distribution within the contact is assumed to be a near-equilibrium
shifted thermal distribution, the amount of the shift and therefore the distri-
bution within the contact are known. The distribution within the contact is
then matched to the corresponding momentum slice of the interior model re-
gion. This procedure must be carried out self-consistently, since the current
within the device is a function of the boundary conditions, which in turn are
functions of the current within the device. Thus, the boundary distribution
is adjusted self-consistently to provide the necessary transfer of carriers into
the device on the source ends of each slice.

A second important property of the contacts is that they must remove
all carriers which are leaving the device. In the so-called ideal contact, the
carriers are perfectly extracted from the device at the outgoing boundary.
The non-local potential in (31) creates a problem as there is usually a weak
discontinuity in the derivatives of the potential at the boundary. This leads
to an artificial reflection of carriers from the boundary region. 312 '° Such
artificial reflections mar the concept of an ideal contact. The problem is
well-known in general wave propagation, and the solution lies in coupling
the adjacent incoming distribution to the outgoing distribution in a manner
that cancels these artificial reflections, particularly from the fastest particles
which cause the most trouble.aa° The solution for this problem is to couple
part of the outgoing wave back into the incoming wave during the time step
process (during the time evolution upgrade iteration). If we rewrite (30) as

f--w('Pt)=a(P)fw(p +t) W - dPM(x,P)fw(x,p+P,t), (133)

where a(p) is the inverse velocity, and the potential function has been suitably
modified by dividing by -v(p), the boundary condition can be found by a
suitable operator normalization procedure.A-,-331 This leads to the boundary
condition at x = 0, where p > 0, for incoming waves to be expressed through
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the temporal adjustment
Ofw(O,p,t) 1 r M(OP

i+ dP (O,)P) fw(O,p + P, t) = 0. (134)
at hJa(p) -a(P)

Similarly, the boundary condition for the incoming particles at x = L, where
p < 0, is given by the temporal adjustment

afw(L,p,t) 1 fdP M(L,P) f p=+-I w( pP,t)O=. (135)
at h Ja(p)- a(P)

These two equations constitute an absorbing boundary condition for the
Wigner equation of motion that removes artificial reflections from the out-
going boundary. The reflected waves are absorbed at least to second order.
These boundary conditions were used in the simulation of Gaussian wave
packets illustrated earlier in Fig. 7. In subsequent work, Arnold has re-
cast these boundary conditions into an analytical framework, from which he
demonstrated the well-posedness of these equations, as well as showing that
they could be considered as members of a heirarchy of possible boundary
conditions.=

If we are to accurately model heterostructures, then there are also inte-
rior boundaries to consider, such as may arise at the interface between two
materials, where there are differences in the effective mass. If the bands are
parabolic, this does not introduce much of a problem, as it can be handled
in a simplified manner by renormaliz;ag the barrier potential (since, in the
scattering state basis, the discontinuity in the momentum wave vector is de-
fined by the product of the mass and energy). However, this may not insure
current continuity across the interface, which could introduce a source of
error. The proper interface characteristics will take this into account.=

13. The Double-Barrier Resonant-Tunneling Diode

In this section, we will describe the simulation of a double-barrier resonant-
tunneling diode using the approaches outlined above. Our primary emphasis
will be on a GaAs/AlGaAs structure with two 5 nm thick, 0.3 eV barri-
ers separated by a 5 nrm well. The regions outside the barriers is assumed
to be doped to a level of 1018 cm-3 , although the importance of using a
lightly-doped spacer-layer adjacent to the barriers will be discussed as well.
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A relaxation-time approximation, with a r appropriate for a mobility of
3000 cm2/Vs, will be used to simulate the dissipative processes in the device,
although we will discuss the impact of detailed modeling of the inelastic pro-
cesses in the next section. The equilibrium Wigner distribution function for
this structure (in the absence of the spacer layers) was illustrated in Fig. 7.

The steady-state I - V curve of the device is calculated by applying an
incremental (negative) bias potential to the cathode contact, then solving
(30) to steady-state by time iteration procedures, while solving for the local
potential through a self-consistent iteration of Poisson's equation.320 Other
approaches have also directly solved for the distribution function and the po-
tential through a purely steady-state solution of the equations. 31 9 Here, we
concentrate on the time-evolution approach. Study of the transients show
that large-signal transients decay exponentially, and that steady-state condi-
tions are achieved in a few hundred femtoseconds.328' 33 The time is stepped
in small units up to 1.5 ps to insure that steady-state is reached, while check-
ing simultaneously for convergence (at the end of the time evolution) of the
distribution function and potential. Once the maximum applied voltage is
reached, the potential is then ramped downward again. One absolute check
for the overall stat ility of the solution technique is the recovery of the equi-
librium distribution function at the end of the voltage sweep. Numerical
instabilities would be integrated to their maximum amplitude during this
process, so that the recovery of the equilibrium distribution means that the
total error introduced in the process, integrated over many hundreds of ps,
is negligible on the scale of the equilibrium Wigner distribution function.
From the steady-state conditions, at each applied bias level, the current in
the device is calculated.

The resultant I-V characteristics are shown in Fig. 29. The self-consistent
internal potential at a bias level of 0.22 V, quite near the peak in the current
through the DBRTD, is shown in Fig. 30. It is clear that only about 1/3
of the total potential is dropped across the barrier region of the device. A
majority of the remaining potential drop lies across a large depleti6n region in
the cathode adjacent ohmic region. Many experimentalists have speculated
that this region should actually accumulate. In fact, at very low biases, this
region does show slight accumulation. As the bias is increased, however, this
region (near the cathode contact) begins to deplete of carriers. This depletion
arises from a combination of sources. First, there is a triangular quantum
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well formed between the cathode contact and the first barrier potential which
results in some quantization of the carriers (as the quantized level is moved
further from the Fermi level, depletion arises), which is similar to that found
in the inversion layer in an MOS transistor.19 Secondly, the initialization of
this triangular well is caused by the contact properties itself. There is an
inherent contact resistance in this device, which is a manifestation of the
Landauer contact resistance. 95 Moreover, cathode-adjacent depletion is well
known in nonlinear two-terminal devices such as the Gunn-effect diode.W5

Such depletion results from the need to balance the resistance of the active
region with that of the cathode source. The use of a spacer layer can alleviate
this depletion.

DBRTDs are often fabricated with undoped spacer layers at the interface
between the barriers and the bulklike regions of uniform doping. The effects
that primarily accrue from the use of the spacer layer is to create a resis-
tive region in the device, which can serve as a matching layer to the contact
source of carriers, while also accumulating carriers for injection through the
barriers. The role of the spacer layer on the self-consistent potential in equi-
librium is shown in Fig. 31. It may be seen that a slight upward shift of the
barriers arises from the undoped regions, and this will cause a much smaller
(or no) depletion. This is a consequence of the better match of the overall
device resistance to the contact properties, and will concentrate the poten-
tial into the barrier region, leading to a better peak-to-valley ratio. A second
difference that will arise from the barrier layer, is a reduction in impurity
scattering in the region near the barriers, which causes a longer mean-free
path, and better tunneling characteristics. In Fig. 32, the potential distri-
bution across the device is shown, both with and without the spacer layers,
for a bias of 0.4 V, which is near the valley of the current in Fig. 29. It is
clear that the spacer layers have essentially eliminated the depletion in the
cathode adjacent region. There is a larger fraction of the potential dropped
across the barrier region, and actually a small depletion in the anode adja-
cent region. The latter arises from the extraction characteristics of the anode
contact. The I-V curves for a dlevice with the spacer layers (5 nm thick) are
shown in Fig. 33. It may be seen, from comparing this figure with Fig. 29,
that the peak-to-valley ratio has been increased, both by enhancing the peak
current through a lower series resistance and a lower valley current through
the enhanced barrier potentials, and the negative conductance increased as
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well. In both figures, however, there is a well-defined hysterisis, or bistability.

Intrinsic bistability in the DBRTD is thought to arise from charge storage
in the quantum well. During the upsweep of the voltage, the quantum well
resonant state sweeps through the full conduction band states, so that as
the minimum of the current is approached the well is full of carriers (staying
there through a sequential tunneling process, as opposed to a complete res-
onant tunneling process). On the downsweep of voltage, however, the well
is basically empty as it comes into alignment with the full conduction band
states. The difference in charge in the quantum well between the upsweep and
downsweep changes the self-consistent potential, and the current, to reflect
this bistability. This interpretation can be supported just by simple circuit
arguments and from the presence of the negative differential conductance.1 22

The transient behavior of the DBRTD is readily studied as well, either
by just switching the voltage from one level to another3' or by actually
superimposing a small-signal a.c. signal.as7 In Fig. 34, the current transient is
shown for switching of the voltage from 0.26 V (at the peak of the I-V curve)
to 0.45 V (in the valley region), for the device without the spacer layers, in
order to simulate a large signal response. This choice of voltages will select
the intrinsic properties derived from discharging the quantum well, which
is thought to lead to the large overshoot of current. The rapid oscillations
are caused when the internal potential adjusts to the changing distribution,
which is a coupling of plasma-like oscillations of the charge density to the RC
controlled oscillations of the barrier capacitances. The carriers themselves,
through their inductive response, cause the large overshoot of current. The
large-signal transient has been calculated for three values of the relaxation
scattering rate r. These correspond to mobilities of 1500, 3000, and 4200
cm2/Vs. The magnitude of the conductance is shown in Fig. 35(a). The
real and imaginary parts of the condivity are plotted in parts (b) and (c)
of the figure. The use of several different mobilities, and scattering times,
insures that the basic response frequency is not due to the conductivity roll-
off at frequencies such that w" > 1. In all three cases, the magnitude of the
conductivity peaks at about 1.5 THz, although the peak height is sensitive
to the magnitude of the mobility. This peak arises from the large reactive
contribution to the conductivity, as may be seen from Fig. 35(b), even though
the real part of the conductivity passes from negative to positive at this
point, as shown in Fig. 35(c). It should be noted that this is almost an
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order of magnitude below the bulk carrier plasma frequency at the doping
level used, so that the oscillation leading to this peak is not simply a plasma
oscillation in the bulk density. Nor is it related strongly to the oscillations
of the two-dimensional plasma in the well at the wave vector corresponding
to the well thickness, as this frequency actually lies above the bulk plasma
frequency. Nor is it a simple RC effect, since the change in the mobility
would be expected to change R, and hence the RC roll-off frequency. Rather,
the dominant time in these figures seems to be strongly related to the time
necessary to tunnel through the resonant structure, although the latter is a
controversial subject. However, this time (as estimated from the tunneling
of Gaussian wave packets through resonant structures') does correlate well
with the peak frequency in Fig. 35. However, Tsuchiya et d.3 report
studies which show that the switching time correlates well with changes in
the effective mass of the material system used, and not well with barrier
thicknesses. This latter does not support a tunneling time interpretation,
and especially not one in which the tunneling is sequential. It should be also
noted that the frequency of the peak is quite near to the Bloch frequency

eEd eVas=--=T (136)

where V is the voltage drop across one of the barriers (the voltage drop
between the quantum well and the states on the other side of one of the
barriers). However, there is very little work on the relation of the Bloch
frequency, which is usually defined in a periodic structure, and the states
of a single quantum well (although this is the basis of Bloch oscillations in
single-electron tunneling structures13), and it is clear that more work needs
to be done to clarify the limiting frequencies of the DBRTD.

14. The Role of Dissipation

The above simulations were carried out in the relaxation-time approx-
imation (85) with a constant scattering time. This is certainly an over-
simplification of the scattering processes, and it would have been better to
utilize at least an energy-dependent relaxation time, although there is no
equation with which the local energy can be determined in the direct solu-
tions of (30). The literature rontains many allusions to an inaccuracy of the
relaxation-time approximation itself, in that it is often asserted that it is not
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charge conserving. In fact, it should not be on the local basis, but should
be so on the global basis (i.e., the total charge in a device must remain such
that the overall device is charge neutral). Indeed, if we required that

/ d3 p (f(R, p) -- fo (R, p)\ =_ 17

there would not even be a drift-diffusion model. We must recall that the
latter is found by rearranging the Boltzmann transport equation (1), in the
relaxation-time approximation and in steady-state, to obtain

f(Rp) = fo(R, p) - r(p) [ R- - (VV)-L] (138)

and if (137) were valid, there would be no current flow generated from this
equation. Rather, (138) just illustrates that the current, which is obtained
by taking the first moment with respect to momentum of -this equation,
arises from a balance between the driving forces (contained within the square
brackets) and the dissipation (represented by r).

To go beyond the simple model of a constant relaxation time used above,
one must extend (30) to include the actual scattering processes in their nat-
ural physical basis. Levinson314 included the quantum mechanical terms
for inelastic scattering in his derivation of the Wigner equation of motion
from the density matrix. These inelastic processes were included only to
the equivalent of first-order in time-dependent perturbation theory, but they
were done in a manner that incorporated the intra-collisional field effect
(essentially, the existence of a non-zero collision duration that allows for an
interference between the inelastic process and an accelerating potential).A0,'30
Inelastic processes have subsequently been included in the simulation of the
DBRTD,34xm but to relatively low order in perturbation theory. Neverthe-
less, the best summary of the various scattering processes is given by Frensley
in the appendix to his review on the role of boundary conditions.=9

In Fig. 36, the effect of the inelastic processes on the self-consistent po-
tential within a DBRTD is shown, by varying the strength of the inelastic
interaction.342 It may be seen from this figure, that when the scattering is
weak, a depletion layer forms in the cathode adjacent region within the de-
vice, just as described above. As the scattering strength is increased, this
depletion is reduced due to the higher resistance of the doped regions, and
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at high scattering strengths no depletion layer is found in this area. This
reinforces the above interpretation that the depletion region forms in order
to match the active area resistance to the contact properties, and repre-
sents a contact resistance. Raising the resistance in the active device area,
either with a high rate of inelastic scattering or by the introduction of a
lightly-doped buffer layer adjacent to the barriers, eliminates the need for
this depletion-induced resistance.

While the exact evaluation and comparison of the simulation with exper-
imental data requires the inclusion of the details of the inelastic scattering
processes, the major features of the operation of the DBRTD are rerzvered
quite well with the constant scattering rate model. There remains, however,
room to study the role of the inelastic processes further, since they have so
far only been included to relatively low order in perturbation theory. How
they may need to have the basic Wigner function renormalized, as is neces-
sary in general with the Green's functions discussed in the next section, is
currently not well known. I

The coulomb interaction among the carriers has been included by ob-
taining the Wigner function from the real-time nonequilibrium Green's func-
tions.w Here it is found that the scattering function contains memory effects
arising from the real and advanced Green's functions. Under some simpli-
fying approximations, the electron-electron interaction can be made to look
like the electron-phonon interaction, at least within the form of the mem-
ory functions. The carrier-carrier interaction was also considered, along with
the electron-phonon interaction, for carriers in a quantum well by Tso and
Horing.34 The interaction between the electrons and holes is shown to give a
transient negative electron mobility, as seen experimentally in laser excitation
experiments.3 5

15. Other Devices

Tsuchiya et aL/.• have used the Wigner function to simulate the linear
and nonlinear transport in an electron waveguide, in which elastic scattering
by impurities was included in the simulation. With weak scattering, they
find the standard quantized conductance of the waveguide, given by (4).
As the strength of the impurity scattering is increased, the steps in the
conductance are found to deteriorate and to eventually disappear. At large
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bias voltages, the nonlinear transport also causes the conductance to deviate
from (4). These authors have also included a gate across the quantum wire,
and studied the transient switching of this gate, in analogy to that discussed
above for the DBRTD. In Fig 37, the Wigner function is shown for two
different bias voltages on the gate (the sign has been changed from that of
the authors to represent voltage and not energy). The quantum wire is in a
two-dimensional electron gas and is assumed to be 30 nm wide, with a Fermi
energy of 10 mV at 4 K. Clearly, under a positive voltage, the region under
the gate is accumulated, while a negative voltage depletes the region under
the gate. When the gate voltage is switched from zero to 50 mV, creating a
potential well under the gate, oscillations are observed in the current, which
are considered to be due to the resonance of the electron wave in the potential
well formed under the gate. Isawa and Hatano347 have also used the Wigner
function to study a one-dimensional ballistic channel with a single point
scattering represented by a 6-function potential.

Miyoshi et aLs have used the Wigner function to study the transport
of holes in the two-dimensional gas formed at the interface of a InGaAs-InP
avalanche photodiode. In the structure, thin quaternary layers were inserted
at the interface to eliminate hole trapping. Gradirng was also used for this
purpose, with the latter found to be more effective. Scattering was modeled
by a simple relaxation-time approximation. These authors have used the
Wigner function approach to model both electrons and holes in a separate-
confinement heterostructure quantum well laser.-3 They find that electrons
and holes are not equally injected into the quantum well, which means that
the conventional gain model needs to be changed.

V. Modeling with the Green's Functions

The previous two sections dealt with modeling devices in ways that ex-
tend quite easily to the semi-classical world. The approaches, as pointed
out earlier, involve only a single time variable and concentrate on quantum
effects that arrive from spatial correlation. The Green's functions, however,
include two time variables, and describe propagation/correlation between two
spatial points at different times. Thus, temporal correlation processes are in-
corporated in a more fundamental manner. With this added complication,
for far more equations are needed to describe the Green's functions, comes
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the benefit of a much more direct incorporation of dissipative processes. In
Sec. 5b, the set of nonequilibrium Green's functions was introduced. These
different functions varied with the ordering of the field operators and time
events. While six different Green's functions were introduced (the retarded
and advanced functions, the less-than and greater-than functions, and the
time-ordered and anti-time-ordered functions), only four of these are con-
sidered to be independent in the general nonequilibrium situation, and only
two are independent in the equilibrium system. The difference between the
nonequilibrium system and the equilibrium system lies in the added require-
ment in the former case to return the integration path to the initial time, as
indicated in Fig. 8, if we are to properly retain normalization of the Green's
functions. This normalization is necessary, if we are to be able to cancel
disconnected Feynman diagrams in a perturbation expansion. W4, 213

Keldysh introduced a general method of treating the set of Green's func-
tions with a single matrix Green's function.2w The Keldysh matrix may be
written as

G I G,< -Gr

We may think about this matrix form in the following way. The rows and
columns of the matrix correspond to the time arguments of the Green's func-
tions. While it is not correct to identify the rows and columns with the por-
tions of the trajectory in Fig. 8, the "11" position is the Green's function
that one would get if both time variables were on the bottom real time path
(forward in time), and the "22" position is the Green's function one would
get if both time variables were on the upper real time path (anti-time di-
rected). The other two arise for the cases of contour ordering if the two time
variables are on opposite parts of the contour, with the contour extension to
the thermal equilibrium point being ignored. The extension to a 3 x 3 matrix
to include the tail in Fig. 8 has been carried out by Wagner.' Actually, the
Keldysh form rearranges these Green's functions slightly to obtain a zero in
one corner of the matrix. If we subtract Gt from each term in the matrix, and
then multiply through by a minus sign, the new Keldysh Green's function is
just

92 0 G. (140)G2= G,. GK '
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where the Keldysh function is

GK = G> + G<, (141)

and the relations (40) and (41) have been used. Interchanging the rows of
(140) leads to another commonly used form~s'

83[G0 GK] (142)

We can now develop the equations-of-motion for the non-interacting forms
of these Green's functions; e.g., the equations which the functions will satisfy
in the absence of any applied potentials and perturbing interactions. For this,
we assume that the individual field operators are based upon wave functions
which satisfy the basic Schr6dinger equation (6). This leads to the two matrix
equations

( - Ho(r) - V(r) G3.o = -l1, (143)

(--ihi± - Ho(r') - V(r')) G3,0 = hi, (144)

where I is the unit matrix (unity on the diagonal and zeroes off the diagonal).
The "0" subscript has been added to indicate that this is the non-interacting
form (there is no inter-particle or particle-lattice interaction). In the next few
sections, we will show how this is expanded to include the electron-phonon
and other interactions, and how it is applied to study some device structures.

16. Homogeneous, Low-Field Systems

Transport, as has been stated earlier, arises as a balance between the
driving forces and the dissipative forces. To achieve a description of transport
with the Green's functions, it is necessary to now add some interaction terms
to the Hamiltonian. The interaction term is treated as a perturbation in the
usual case, along the lines of the S-matrix expansion of (35). These terms
are usually expressable in terms of Feynman diagrams with the use of Wick's
theorem. 213 In the present context, where it is desired to treat dissipation
through the electron-phonon interaction, this procedure works relatively well,
and has been almost universally used. The assumption is that projecting the
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time axes back to the initial time allows the use of the pseudo-equilibrium
to justify the Wick's theorem expansion. The various parts of the diagrams
may be regrouped then into terms which represent the Green's function itself
and terms which represent the dissipative interaction with the lattice, which
are referred to as the self-energy. The self-energy may also be expiessed as a
matrix E just as is the Green's function G itself. We will not treat the actual
Feynman expansion here, as its form is available in numerous textbooks and
review articles. Following this procedure, it is now possible to write the
equation of motion for the full Green's function as

i - Ho(r) - V(r)) G = hI + EG, (145)

Ai - Ho(r') - V(r')) G = hI + GE, (146)

where, in general, the Green's function matrix and the self-energy matrix are
of the form (142). It should be noted that the reduced notation '

EG(1,3) = I d2E(1, 2)G(2, 3) (147)

involves an integration over the included internal variables, and the short-

hand notation 1 = (r1 , t1 ) is used, so that the integration is over three spatial
variables and a time variable. It is necessary to point out here that the total
self-energy has been split into two parts: (i) a single-site part that arises
from the external potential V(r) which does not require the integral of (147)
since it occurs at a single point in space, and (ii) the nonlocal self-energy
arising from the interaction of the electrons (or holes) with the phonons of
the lattice or with other electrons (or holes). The normal Fermi-golden rule
assumes that the interaction takes place instantaneously and at a single point
in space, which are assumptions that reduce the nonlocal self-energy to a
single-site representation of the self-energy. This approach has been followed
by some, who purport to follow more general quantum transport,-1 but
reduces the results to little more than the Boltzmaun equation treatment. 22s
A somewhat similar approach has been used by Datta and co-workers,s 2 in
which the self-energy for the scattering process is represented in the general
form

ihi ihX>(r,r';w) = .r)(r - r'), Ec<(r,r';w) = W)eS(r - r'), (148)
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where w is the Fourier-transform variable corresponding to the difference in
time t - t'. A similar description is used for the retarded self-energy, and this
has been applied to treat especially impurity scattering in mesoscopic devices.
Here, however, we will follow a more general treatment for the electron(or
hole)-phonon interaction.

A. The Retarded Function

In low fields, the general approach is to seek the quantum transport equiv-
alent of the Boltzmann equation. The traditional Boltzmann equation is ex-
pressed in terms of the distribution function f(R, p, t). In previous sections,
it was necessary to transiorm the density matrix or the Wigner distribution
to achieve this quantity. Here, we want to describe the transport equation for
low fields in a homogeneous system. This is, in essence, a linear approxima-
tion. In the process, we will introduce a phase-space distribution, along with
the Wigner coordinates (the center of mass coordinates). The approach we
follow is that of Mahan and co-workers, 3 ss3- and treat only the low electric
field case. It has been extended to the case of both electric and magnetic
fields. 3 55,&%

We begin by separating out the single entry in the matrix equation above
for the retarded Green's function, which leads to the pair of equations

['hy - Ho(r) - V(r)] G,(r,r') = b(r- r') + fd4x"E,(r,r")G,(r",r'),

-h Ho(r') -V(r)] G,(r,r') =b(r -r') + J~"trr)~r,

(149)
These are now two equations that specify the retarded Green's function, and
both must be satisfied. It is convenient at this point to introduce the change
of variables (26), with the equivalent set for the time axes (T is the average
time and r is the difference time in this approach). Equations (149) now
become, after adding and subtracting the two transformed equations

h a+ h2 V + ha2+eE -R) G,(s, R, T, r) =,b(T),(s)
87n 2m 052(s))(

+1 I d4x,(Y,,.G, + G.r,,)
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(i7I + 2V.-+ eE -s) G, (s, R, T, r) =Jd'x"(E2TGT--Gr-E2). (150)

The functions inside the integrals on the right-hand sides of these two equa-
tions have not yet been transformed to the new coordinates, as this is a
complicated process with which we will deal below.

The two equations in (150) describe the relative motion about the center-
of-mass motion and the latter motion itself. To proceed, it is now use-.
ful to Fourier transform the relative motion coordinates in order to achieve
G,(k, R, T, Q). Then, the above equations become

hfl - Ek + h2 V2 + eF" R)G.(kRTfl) = 1( 8m

1 d3sd-re k Is_ dx"(E7,G, + ar.,),

ih a+ - eE+ 8 G,(k, R, T, f) = d3sdreik•-in'r

x Id4X-(E,G, - G,.E,). (151)

The second of these equations has the same streaming terms on the left-
hand side as the Boltzmann equation (1); however, the first equation has
some problems which arise from the streaming terms in the large parentheses
(the last term). This term gives rise to a driving force that has an unusual
position dependence in the otherwise homogeneous system. This leads to
a size dependence which is not at all in keeping with the physics of the
structure. On the other hand, if this is combined with the "frequency" it
is apparent that these two terms together represent the gauge variation of
the energy and potential. This suggests a change of frequency (and spatial)
variable as eF- R eF 8

fl + .-R V V + "- 8 (152)

With these changes, (151) become

- Ek + 8m (, h 7)1 G,.(k,R,T,w) V1
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+J /sdresc8 J d4 x"(E2rG, + GE,)

ih) + vk- V + • + vk a) G,(k,R,T,w)= d3sdreik'-s-i

x Jd4x"(ErG,., - Gr,,)). (153)

The large omega in the integral stills needs to be transformed for these equa-
tions. It is clear that this variation in the exponential in the transformed
collision terms leads to phase interference events for distances small compared
to the inelastic mean free path.

The second of equations (153) contains a term that is linear in the field,
but it is important to remember that the major factor leading to nonlinear
transport is from the distribution function itself and not from nonlinear terms
in the field. In fact this equation is exact to higher orders in the field. The
scattering terms can be quite complicated, and some form of si'mplification is
necessary to evaluate them to any great degree. Sin , the treatment in this
sub-section is supposedly for small electric fields in an otherwise homogeneous
medium, it is possible to use a gradient expansion.2°1

To proceed, the functions are expanded about the center-of-mass coordi-
nates, which assumes that both of the latter are much larger than the relative
coordinates. This expansion limits the applicability of the results to systems
in which the potentials are slowly varying in both space and time. This is
hardly the case in mesoscopic semiconductor devices, but is a good approx-
imation for linear transport in a homogeneous semiconductor. In order to
illustrate this procedure, only the first term in the collision integral on the
right-hand side of (153) is considered. This integral is

I = J l'sJ dretflt Jd'x" E(x,xk")G,(x",3e) . (154)

First, the center-of-mass coordinates y = x - are introduced so that the
integral is now a function of E,(y,x--)G,(x - x! - y, '+-Y). Then, the
coordinates are again transformed to s = x - x', R = X+X'e Finally, the2 "

variable change w = s - y is made, and (154) becomes

=JJ d3 Wd 3yeik-(w+y) J J drdre9'
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W 
(1 55T 5)x E,(y,R+-,r',T + )G,(w, 2-IT),T-7). 15

The center-of-mass variables all appear with offsets, so that these may be
separated by expanding the functions in a Taylor series, and the Fourier
transforms then taken so that the scattering function now becomes

i
I = E,(k,R, 2,T)G,(k,Rj1,,T) + +f {,,G ... , (156)

where the bracket operator is

E,,,} OE , 8 r`,. OE , O r, D,. 8G, OE•,. OG,. (157)
{,, G}- OR Ok Ok OR ai OT OT" - fl

This latter term has a natural symmetry that is also found in the Poisson
brackets of classical mechanics, and the short-hand, notation of the brackets
is often used for this purpose. The frequency derivatives are with respect to
the unshifted frequency at this point, so that we must still correct for the
change in frequency. This latter operation leads to

E,• 0 G,- 8E,- OG, + E,. OG, OE, 8G,
OR Ok Ok OR + w OT 8T 8w

eF (M. OG, `E,. 0GBC(15

+h -w k 8k w 8w

Already the first term in the gradient expansion has produced a term that
is linear in the electric field. If higher-order terms are retained, they lead to
higher-order terms in the electric field. Since these terms have been neglected,
the resulting expansion is valid only to linear terms in the field.

With these results, it is now possible to write down a relatively closed,
but still approximate, set of equations for the retarded Green's function.
Combining the above results, these equations become

• Ek + -2 V + eF -2_ , G,= I,

';I [( GE,.\ (E,, G,)
{ +Vk-V+~ eF - Vk + I I)Gr

181 TLI haw) Ok \hOkJ Tw
(159)
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where the bracket on the right-hand side of (159) now refers only to the first
term on the right-hand sidc of (158).

These equations simplify considerably for near equilibrium systems (which
are the ones of interest) that are spatially homogeneous and in steady-state,
so that the derivatives with respect to R and T vanish. Then, the above
equations can be written as

[h Ek - =J G ,

eF. a -"+ + -'--) '] G,. = O. (160)
K h~w) Tk + hOkJ o

The first equation can be solved quite simply to yield a result that will also
satisfy the second equation for sufficiently small electric fields F. The retarded
Green' function is then finally found to be (retaining only terms linear in the
field)

G, (k,R,w,T)1 + O(F6) . (161)
G~(kR~wT) - Ek- Er(k, R,w, T)

The retarded Green's function in this equation has no first-order terms in
the electric field. Thus, its form is unchanged from that of the equilib-
rium function, although of course the self-energy may have undergone some
changes. It may also be expected that the spectral density A(k, R,w, T) =
-21m{G,(k, R, w, T)} will also have the equilibrium form. The equilibrium
form of this function is a Lorentzian, which arises from normal collisional-
broadening. These important results will have a major effect on achieving a
quantum Boltzmann equation below, after finding the "less-than" function.
Before proceeding, however, it should be noted that if the quadratic terms
in the field are retained in the retarded Green's function, then the inverse
transform into the difference coordinates will contain Airy functions. This
observation provides a guide to a powerful approach to the high-field terms
in the next section.

B. The "Less-Than" Function

The next step is to repeat the above procedure for the "less-than" function
G<. It is this latter function that is related to the distribution function that
we normally incorporate in the Boltzmann equation. As before, we will
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encounter two equations which arise from the two matrix equations (145)
and (146). We can write these two equations as

[ -Ek+-h2 V + ( Fv a <)2 = G I+

I + + eF. [k a+ ]v G< 1- (162)

where the scattering functions are given by

J±= d3Sdei,.s-(w-eFR/A)] J d4x"[E.G< + E<G8., Gr< ± G<Ei.l
(163)

In the absence of any collisions, the right-hand sides vanish, of course. The
left-hand side of the second equation has the same form as the Boltzmann
equation found earlier (except for the second term in the square brackets).
The derivative with respect to the frequency suggests a constraint that can
be placed on the connection between the classical and the quantum forms
of the Boltzmann equation. However, if we properly connect the Wigner
distribution function with the classical distribution function, then using (43)
to form this function from the above equation will clearly illustrate that the
frequency derivative will vanish from the classical limit.

The gradient expansion can now be used on the terms I* in the same
manner as previously. Our interest will remain focused on the homogeneous,
steady-state situation in semiconductors,where derivatives with respect to
R and T may be neglected. This also means that the gradient expansion
terms can be evaluated at the center-of-mass coordinates with the relative
coordinates appearing in their Fourier-transformed form. Then, equations
(162) become

r W ro a r q \1 eF.

h &oa 88k)]j4• ,/O OS 81 _< =eF

eF- 1+ vk + 2 ] + 2rG< - AE< + .J(W)
(164)
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0

where the following definitions have been introduced

a, =G.1= w iA ,E=t s i
2 a

SE< 0u 0E< 9u
=5w- 8k 8k (65)

We recognize the spectral density discussed above in these definitions. Sim-
ilarly, r is related to the lifetime of the states involved.

It is now possible to make a further simplification for the near-equilibrium
situation. Since the field multiplies the two bracketed terms, the Green's
function within those terms may be replaced by the field-independent form
since we are only seeking the linear response terms. In equilibrium, it is pos-
sible to separate the less-than function with the ansatz G< = iP(w)A(k,w),
where P(w) is the Fermi-Dirac distribu ion function. Each term m'iltiplying
the electric field contains either a factor of P(w) or the derivative of this
quantity with respect to frequency, since both G< and E< are proportional
to P(w). In the absence of the field, G< is just the equilibrium form, and
the two collision terms 2rG< and AE< must balance each other (which is
just another statement of detailed balance). Thus, it is the deviation of the
distribution from the Fermi-Dirac form which leads to the transport. Thus,
those terms involving the derivative of P(w) that must be of importance,
and indeed the other terms will drop out. Thus, the second equation of
(164) becomes

ieF. vk +O ' )r + o(w - E, -S) A2(k,w) 8P(w) = Ar<-2rG<.
1k ikj 7akJ 8w

(166)
This result is the steady-state homogeneous form of the quantum Boltzmann
equation. The right-hand side demonstrates a gain-loss mechanism which is
somewhat different from that normally seen, but it may easily be cast into
the normal form. To linear terms in the field, this equation is exact and its
derivation by Mahan and co-workers represents a major step forward in the
use of the real-time Green's functions.3"3

It may be noted that the coefficient of the second term in the square
brackets (left-hand side of the above equation) goes to zero at the peak of
the spectral density. We can reasonably therefore neglect this second term,
as will the velocity correction arising from the momentum derivative of S

101



in the first term. This latter term is a correction to the velocity that arises
from the correction to the single-particle energies arising from the real-part

of the self-energy, just as the second term is a dispersive velocity correction

arising from lifetime effects. The neglect of these terms really means that we

are ignoring any corrections to the velocity structure of the single-particle

energy states due to the scattering processes, which is more or less akin to

assuming that the self-energy shifts the bands in a rigid manner. Certainly

this is appropriate to assume for the linear response case. Then, (166) can
be rewritten as

A2(k,'w)eF' vkL' -i [A(k, w)E - 2PG<. (167)a,
This may be rearranged to give

G- iA(k~w)[- A(k,w) eF - P(w) (168)

At this point, it is necessary to introduce a form for the self-energy. It
is easy to show that it may be expressed in terms of the Green's function

itself and a phonon Green's function (we treat here only the case of phonon

scattering). Thus, Z< = iD<G<, but where the Green's function is evaluated

at the shifted momentum and frequency according to the phonon frequency
and momentum. That is, we can write the self-energy in the form

E<(k~~w' = JZ ~ M(k,q)I G<(k ~q,w ±wq,), (169)

where the term in the magnitude brackets is the matrix element and includes

the phonon occupation factors, and the summation runs over emission and

absorption processes. It has been assumed here that optical phonons, which

are taken to be dispersionless, are the only phonons of interest. To proceed,
we now will make the ansatz that (168) can be rewritten as

G< = iA(k,w) (w) - A(k,w)eF-vk ,aA)J , .(170)

where we now have to evaluate the function A(k, w). If we use this definition
in (169), we find

aP(w)2w
E<(k,w) = iP(w)r- ieF vk Ow h a
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x ' IM(k'q)12 vk±,q AA(k 4-q.• 4-9) . (171)
(2w)3Vk

where (it should not be missed that a short-hand notation is used here, and
that both A and A have the arguments listed for their product)

r= 2vEM q IM(k,q)12 A(k±q,w±-wq). (172)
h (27r)3

This now gives us back our initial assertion on the Green's function (170) if
the scattering kernal satisfies the integral equation

A~~w =A(k w) i 2wr P dqA k ) =_a,__ -)- JM(k,q)12  AA(k±q,.w±co).

2 kw) = 2) T (27r) 3  Vk

(173)
The quantity A(k,w) can be referred to as a vertex correction, in that

the integral equation is solved to find a modified scattering ttrength. For
example, if we had assumed that there was also carrier-carrier scattering
that modified the Green's functions, this would also appear in the scattering
kernal A as a correction for the carrier response, which is one form of dynamic
screening of the scattering process. It also has to be considered that if the
phonon occupations are driven from their equilibrium forms, then the matrix
element above is modified and a set of equations must be solved for the
phonon Green's functions.

We note that the set of equations and the paths used to solve them is
just as discribed in Sec. 2 above. We have first solved for the retarded
Green's function in order to find the spectral density. We then solved for the
"less-than" Green's function, which is related to the distribution function.
The equation for this latter quantity was found to be very similar to the
Boltzmann equation, at least in the linear response used here. A similar
approach will be followed in nearly every case of quantum transport with the
Green's functions. The introduction of the two-time formalism has given us
the need to additionally find the spectral density. This was not necessary
in the one-time formalism since there was an integration over the frequency
(energy) domain.

103



17. Homogeneous, High-Field Systems

The development of a tractable quantum transport approach, through
the use of the real-time Green's functions, which incorporates both the col-
lisional broadening of the spectral density and the intracollisional field effect
has proven difficult. (The latter is the interference between the driving terms
in the field and the collisions that arises from the use of the nonequilibrium
Green's functions in the self-energy.) Moreover, this task is further compli-
cated by the need to deal with the length and time scales relevant to modern
mesoscopic semiconductor devices. The general approach has followed that
of the linear response approach of the last section. While the overall Green's
function approach is rigorous in principle, most applications have been lim-
ited by the introduction of the center-of-mass approach and the gradient
expansion. These two processes, especially the latter, tend to limit the re-
sults to low fields. One of the earliest to go beyond this was the work of
Jauho and Wilkins,-47 in which high-field transport in a resonant-level im-
purity system of scattering was treated. In this work, the self-energies for
electron-phonon as well as impurity scattering were formulated, although in
the end the gradient expansion was invoked in order to achieve a result for the
kinetic equation. Nevertheless, the power of the Green's function technique,
when compared to other approaches, is still evident."

In order to separate the "distribution function" part of the less-than
Green's function from the spectral density, one has usually had to invoke
an ansatz, such as that leading to (166) in which G< = iP(w)A(k,w) is
assumed. The form of this ansatz has been the topic of some debate, pri-
marily as there are several methods of approaching the separation. In fact,
the ansatz is usually a method of recovering a single-time equivalent of the
Boltzmann equation. The use of the gradient expansion is just one. type
of separation approach. A more rigorous approach, which is a zeroth-order
approximation in the exansion of the correlation functions in terms of the
collision duration time, has been developed by Lipavsky et alY.m, This
form relates the Green's function to the density matrix as

G< (t, t', PF) = "-ip< (t, pF)G.(t, t', PF), (174)

where /
PF = -ihV + e JfdF(r) (175)
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is the kinetic momentum operator. This approach was found to overcome
a number of limitations and effects that arise from the normal ansatz used
in the separation." 1 We will see below, however, that an approach using
the Airy transforms brings out the separation automatically without having
to make an unwarranted ansatz. Other approaches use expansions in the
field,M2 or models for the spectral density.30

The other item mentioned above, that has been somewhat controversial,
is the intra-collisional field effect. In general approaches to the quantum
transport, a finite duration for the collision is found to occur, and the field
can interact with the particle while it is undergoing its collision. Hence, the
amount of energy and momentum gained or lost in the collision is modi-
fied by the effect of the field during the collision.3 ,,3 14 It was expected that
this could make a significant effect on the transport properties. 12,s 3 2,'3064 In
another approach, in which the collisions were treated as being completed,
no intra-collisional field effect was observed.s6 Later work, however, showed
that it would appear, but would be of such a size as to be negligible in nor-
mal completed collisions,s4 a result in keeping with numerical studies of the
effect.• To date, there is no strong evidence that the intra-collisional field
effect is a significant process, with the possible exception of impact ionization
in wide-band gap semiconductors, in which very high fields are coupled with
relatively slow processes. ,s 68

The collision duration itself is another problem, and one which still has
to be sorted out. There is not much work applicable to this, but one ap-
proach using the Green's functions is due to Lipavsky et al.36 These authors
have also shown that different definitions of the instantaneous approximation
for the self-energy will lead to different effects of the field on the collision,
an effect that is negated if wave function, and therefore Green's function,
renormalization is properly included.370

The use of the center-of-mass transformations introduces some non-physical
variables into the description of transport. These, in fact, make the explicit
assumption that the center-of-mass time T = (t + t')/2 has some inherent
significance. This isn't the case, and nothing makes the point clearer than
the need to modify the ansatz used to separate the distribution function from
the less-than function as shown in (174). Consider the velocity autocorrela-
tion function, which is a function of t - t', where t' is the initial time of this
function. The center-of-mass time doesn't enter into any consideration of
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physical quantities. The same consideration is true for the Green's functions
of interest here. If a transformation is made to the center-of-mass coordi-
nates, and homogeneity constraints (such as the assertion that the solutions
are not functions of R) are applied to the space and time scales, this is fully
equivalent to coarse-graining the Green's functions over time and space scales
corresponding to the inelastic mean free path and inelastic mean free time.
It is well-known, particularly in mesoscopic systems, that the local current
is highly nonuniform, even in otherwise homogeneous systems, and that this
leads to universal conductance fluctuations (d.c. fluctuations of the current
with potential, rather than in time). This means that it will be impossible
to utilize these center-of-mass formulations for such important applications
as proper transient response and the calculation of fluctuation properties on
a scale smaller than these coarse-graining times and lengths. Since many
modern semiconductor devices have characteristic lengths smaller than, or
comparable to, the inelastic mean free path (about 0.1 jim in Si at room tem-
perature), these simplified approaches are doomed to failure in applications
to these devices.

In fact, a constant electric field breaks the symmetry of the system, so
that momentum along the field is no longer a good quantum number, at
least on the scale of the inelastic mean free path. If the field is treated in
the scalar potential gauge, it is the spatial translational symmetry that is
broken, and this was seen to be the case in the approach of the last section
where it was necessary to remove an artificial dependence upon position by a
transformation of the frequency (energy) variable in (152). For this reason,
many authors have placed the field in the vector potential, but this breaks
the temporal translational symmetry, as evidenced from the results of (175).
These facts have greatly complicated the search for high-field solutions for
the Green's functions.

A. The Airy Function Retarded Green's Function

For the above reasons, a different approach is suggested for the treatment
of high-field transport with the Green's functions if the proper space and
time variations are to be retained. It was remarked above, in connection
with the retarded Green's function, that retention of corrections due to the
field introduced Airy functions in the inverse transformation to real space
and time. Indeed, if the Schrddinger equation is solved in the presence of a
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uniform electric field, the basis functions that result are the Airy functions.
The approach to be used here is to begin at the start by transforming the
position variable along the electric field direction using the generalized Airy
transform (nevertheless, it will be found that the treatment still is for the
steady-state). This will allow us to diagonalize the unperturbed Green's
function in the presence of the field alone, and to achieve a simpler form
of the Dyson's equation. 37 1 Nevertheless, it is assumed that the system has
translational symmetry in the coordinates normal to the field. The general
Airy transform is defined by

F(k, s) d 2( ) f(i,z) , (176)

where ý is the two-dimensional position vector in the (x, y)-plane and the
field is assumed to be oriented along the z-axis. For the Green's function, of
course, there are two Airy transformations on the two coordinates. In this
transform space, a function that is diagonal in momentum k (assumed) and
s variables is translationally invariant in the transverse plane but not in the
z-direction.

The retarded Green's function, in the presence of the field, still satisfies
(149). These two equations must be Airy transformed. In the absence of the
self-energy, the solutions are the equilibrium Green's function with the field
present, which may be shown to be

GF o(k,s,s',t,t') = -u0o(t - tI)eiEk,.(±tE)b(s - s'), (177)

where

Ek,s = 2 + eFs (178)

in parabolic bands. This form has the distinct advantage that the Fourier
transformation of the difference, variable in time leads to (for a temporally
homogeneous system)

G (k, s S- s')r hw - Ek,s + 277'(19

which has the generic form expected for the retarded Green's function. There
is a problem in using this form of the retarded Green's function as it assumes
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that the field was turned on in the infinite past (as indicated by the conver-
gence lactor ,7), but this ignores the transient part of the integration path
used for the real-time functions. However, this is consistent with the ignoring
of the "tail" segment connecting to the thermal equilibrium. Nevertheless,
the approach to be used here is only for the steady-state, and cannot handle
the transient solution. The use of this equilibrium form allows us to write
the equations (149) as integral equations, which are the Dyson's equations.
In the Airy transformed form, the first of these equations becomes

G7.(k,s,s',w) = G'-(k,s,w) {6(S -S')+ +dS"Fr(k)S1S" I w) G,(k, s",',

(180)
where the diagonality of the equilibrium function has been assumed in the
prefactor of the integral on the right-hand side.

To proceed, it is now necessary to develop an approximation for the self-
energy that appears in (180). The self-energy is given by the general Green's
function expansion 2 04'

I-r(r,r') = i[G,(r, r')D> (r, r') + G<(r, r)D,(r, r')] . (181)

The operator ordering in the last term (note that there is no convolution
integral in this operator product) is such that it vanishes as the denstiy
goes to zero. As a result, for nondegenerate semiconductors, it is pos-
sible to ignore the second term. Moreover, in most semiconductors, the
scattering is relatively weak and the self-energy can be calculated in the
Born approximation--essentially the Green's function in the first term is re-
placed by its equilibrium, non-interacting form which is the free propagator.
Since the retarded Green's function is still solved self-consistently within the
Dyson's equation, collisional broadening will still appear in the final form,
and the field's presence in the free propagator introduces the high-field effects
within the scattering process. The phonon Green's function, for non-polar
optical scattering, can be expressed as (for equilibrium phonons)

Do, = -i~r j Mq 12bp± q (182)

and the matrix element includes the phonon occupation functions. The sum
runs over the emission and absorption processes. With these two approxi-
mations, the retarded self-energy can be written as (where the carrier wave
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vector is split into its field-directed part and transverse part)
E,(k, k,w) d3q

(2w)3

w = k + ka 2 - q, w' =k'+ k-,a, - q. (183)

To be useful, the momentum dependence in the z-direction will be trans-
formed back to real space and then Airy transformed. In general, the matrix
element for non-polar optical phonons is not momentum dependent, so there
is no complication in the matrix element from these transformations. Finally,
the self-energy is found to be3 71

E,( = ( ,-2 W I too)+iN(s7w±wo)], (184)

where

M(s,w) = Ai'(y) + yAi2(y) , N(s,w) = Ai'(y)Bi'(y) + yAi(y)Bi(y) ,

eFs - hw )2 - 3(eliF)2  (185)

E ' 2m
The real and imaginary parts of the self-energy are plotted in Fig. 38 for
two different values of the electric field (and for parameters appropriate to Si
at room temperature). The oscillatory behavior of the real part of the self-
energy is quite interesting and indicates that the interaction of the field and
the scattering process is creating an equivalent quasi-two-dimensional behav-
ior in the carrier gas, which is reinforced by looking at the imaginary part,
which is related to the density of states. The step-like structure reinforces
this interpretation.

Since the self-energy is diagonal in the Airy variable s, the integral in
Dyson's equation can be removed by assuming that the retarded function is
also diagonal in this variable or by taking a delta-function dependence for
the difference. This then leads to the final form for the retarded Green's
function 1

G,(k,s,w) = _ - ET(k,s,w) (186)

which is the equilibrium form, although the field is present in the transformed
energy and in the self-energy. This result differs from that of the previous
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section. The spectral density is then twice the negative imaginary part of
the retarded Green's function, and is

A(ks,w) = -21m{E,.(k, s,w)} (187)
[A) w - Ek,, - Re{Y2,(k,s,w)}] 2 + [Im{E,(k,s,w)}1 (

which, again, has the equilibrium form, but differs by the explicit incorpo-
ration of a field dependence. This is shown in Fig. 39, and the shift and
distortion due to the field is evident. Note, however, that the normalization
is maintained and a single-time function, which would integrate over this
spectral density, does not exhibit any large effect from the field distortion,
as has been discussed above.

B. The Less-Than Function

With the approximations above, it has been possible to achieve a good
representation of the spectral function, which is correct (within the approxi-
mations) to all orders in the electric field. Although it is constrained to the
case of weak scattering, it demonstrates both the intra-collisional field effect
and the collisional broadening effects. With this spectral function, it is now
possible to calculate the "less-than" Green's function G<. In the low-field
case of the previous section, it was found that we had to solve an integral
equation for a scattering function A. The latter represented aspects of the
deviation from the Fermi-Dirac distribution function. Here, an integral equa-
tion will also result, but in this case it will lead to the quantum distribution
function directly, without the need for an ansatz. However, this distribution
function will not be the Wigner distribution function. Rather, the quan-
tum distribution function will be a function of the energy alone, just as is
found in the equilibrium case. To obtain the Wigner distribution function,
we will need to couple the quantum distribution with the spectral density
and integrate out the frequency (energy).

Our starting point, as in the previous section, is the matrix equations
(145) and (146), which after introducing the Fourier transforms on the lateral
position and the difference time, and the Airy transform on the dimension
along the applied field, becomes

(Aw - Ek,.)G< (k, s, s',w)= ds"[,(k, s, s",w)G<(k,s", s',w)
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+ G<(k, s, s",w) E.(k, s", s', w)]

(h1w - Ek,..)G<(k, s, s', w) = J ds"[G.(k, s, s",w) E<(k, s", s',w)

+ E<(k,s,s",w)G.(k, s", s', w)J. (188)

At this point, it has already been established that the retarded, and advanced
by their connection, Green's functions and self-energies are functions of a
single Airy variable. This eliminates the integration through the use of a
delta function on the right-hand side of the latter equationr We can then
formulate the sum and differences of these two equations, which in the present
case yield the same resulting equation. In essence this result means that these
two equations are self-adjoint. The resulting equation is just

G<- (k, ) =(k, sw) -G G.r(k, s, , w) (k, s,s',w)
=k, -- Ek,.. + E.(ksw) - E,(k, s, w)

= G 7(k,s,w)G.(k,s',w)Y.<(k,s,s',w). (189)

We note that the retarded and advanced Green's functions have imaginary
parts sharply peaked around the diagonal, in fact we have taken them to be
diagonal. In the last line of (189), we can now assume that the less-than
self-energy is also diagonal without any great loss of generality. With this
approximation, we can now rewrite (189) as

G<(k,s,w) = iA(k,s,w)f(k,s,w), (190)

since the first line contains the spectral density in the numerator of the
fraction, and the quantum distribution function is obtained, without any
ansatz, to be

f Iw<(k, s, w) (191)f(k,a,w) =2Im{E,.(k,s,w)} (11

Although at this point it is not obvious that this function will be independent
of the momentum, this will be found to be the case below, at least for non-
polar optical phonon scattering.

The less-than self-energy function can be developed as easily for the case
of the non-polar optical phonon. As previously, it will be assumed that this



function is diagonal in the Airy variable, so that we can write it (as in the

previous section) as

(k,s,w) 1E M12 {qt ds1As( S3 1 )G<(k - qt, s',w ± cq),

As(y) = 1 Ai(Y) , L (2 1)3  .(192)

which depends, of course, on the less-than Green's function. Now, we note an
important fact about this latter equation. The matrix element for the non-
polar optical phonon is independent of the phonon momentum vector, so that
any change of variables in the integration over this momentum will not affect
the final result for the self-energy. In fact, such a change of variables will
integrate out all of the momentum dependence on the right-hand side of the
equation. This means that the less-than self-energy is a function only of the
Airy variable s and the frequency (energy) w. A casual look at (184) shows
that the retarded self-energy likewise is a function only of these variables.
Thus, the quantum distribution function can only be a function of these
two variables. With these thoughts, the integral equation for the quantum
distribution function becomes

f(s,w) = 2(3)1/6Im{E,(k,s,w)} ,IMqI 2

x fds'As(' - j')N(s',w ± wq)f(a',w ±lwq), (193)

where
N(s',w) = Jd2qtA(qt, s',w) (194)

is the effective density of states at the final energy of the scattering process.
We note that the denominator of the prefactor plays the same role as r in the
low-field equations. In Fig. 40, such a distribution function calculated for
the same conditions as the earlier plots (Si at room temperature) is shown.
It should be remarked that the integral equation for the distribution function
has a certain characteristic form typical of that obtained from the Boltzmann
equation as well. This integral equation can be retransformed into real space,
and a Monte Carlo procedure developed for it. 2 4 5
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It is not obvious that the present formulation retains the desired property
of gauge invariance. This topic has been considered in connection with the
Airy transform and the normal Keldysh approach. 37 2 It has been shown that
gauge invariance carries through to this approach in a relatively straight-
forward manner. Moreover, the resulting form for the Green's functions in
the Airy approach can be transformed directly back into the more normal
formalism in a manner that maintains the gauge invariance.37' Finally, we
note that the Airy Green's functions can be connected directly to the Kubo
formula for the current, and the resulting conductivity can be expressed as374

cr =h( d~k j fr( Re{E,.} +
ý21 2i)2 ~ aa

clln(Imrf{E" }) 2 '[
+ (hA- Ek- Re( E.) ]A (k, fl)f(n) (195)

where the s variation has been removed from the kinetic energy and placed
in the variable fl = w - eFs/h.

18. Femtosecond Laser Excitation

The transport of photoexcited carriers is usually described with the Boltz-
mann transport equation, in which scattering processes, and the excitation
process itself, are described via Fermi golden rule transition rates. However,
today it is possible to excite a semiconductor with a laser pulse that is as
short as 6 fs.s1s It is no longer a simple case of exciting an electron-hole
pair with a photon from one of these lasers, but now one must begin to deal
with the correlation that exists between this electron and hole on the short
time scale (< 100 fs). Indeed, the polarization of the pair itself can now be
measured with some degree of accuracy.3 7s-' 3 In general, the semi-classical
description will break down on this time scale. First, an optical pulse creates
carriers in quantum states which are definitely not semi-classical in'that the
initial carrier wave functions are super-positions of conduction and valence
band states.ws As long as this phase coherence between the electron and
hole states-the interband polarization-remains important, the carriers are
not characterizable as plane waves with characteristic momenta from either
the conduction or the valence band. Hence, on the short time scale, this
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polarization must be taken explicitly into account if the system is to be de-
scribed with any sort of accuracy. The second major point is that the short
time scale of the optical pulse gives rise to a very broad Fourier spectrum of
photons impinging upon the semiconductor. The broadening in excitation
photon spectrum that comes from this short time interaction must be taken
into account in a manner equivalently to the collisional broadening.

The approach to treating rapid excitation of electron-hole pairs in serm-
conductors is a problem that is inherently a natural for the Green's function
technique, although this study is relatively recent in application. In fact, one
will ultimately want to reduce the treatment to a single time variable, just as
in the density matrix approach. However, the inherent correlations that must
be treated make this a problem better treated by the Green's functions where
the temporal correlations are a natural result of the basis. In fact, the prob-
lem has been treated to some degree both by the density matrixm as well
as by the real-time Green's function technique.2, 1 -'0 On the short-time
scales, the coherence introduced by the laser pulse cannot be neglected, so
that the interband polarization must be treated as another kinetic variable.
The resulting developement leads to the optical Bloch equation.w2,'-3"

The presence of the correlation, that is represented by the interband
polarization, is quite significant. The shock of the intense laser pulse fully,
and completely, separates the electron-hole gas from the thermal equilibrium
background. While there has been some work on treating the development
of the non-equilibrium system from the thermal distribution (along the tail
of the contour of Fig. 8),-3104 this approach is not possible in the current
context. This means that it is generally not possible to utilize Wick's theorem
to discard the normal-ordered products in the Green' function expansion
of Feynmann diagrams. These products are part of the initial correlations
that remain after the laser excitation, and must be treated by higher-order
diagrams in the Green's function expansion.-"'A In this section, we want to
describe the manner in which the initial correlations, and the carrier-carier
interactions, fit into the development of the Green's function equation of
motions for the two carrier types.

In order to achieve the goal of writing the Green's functions as products
of two types of carriers, we expand the definition of the Keldysh matrix given
by, for example, (142). We consider that each of the field operators can be
either an electron or a hole operator (an electron in the valence band). Then
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it is possible to write the equivalent of (142) as

G ,, G J- (196)G c G VV I

which is a resulting 8 x 8 matrix, where here c and v stand for conduction
and valence band carriers. The end result will be 8 equations for Green's
functions for various types of particles and their interactions. Of course,
there are certain symmetry properties among the various Green's functions.
In the laser excited situation, however, we are interested in the equivalent
density matrices for the two carrier types and in the polarization (the cross-
terms in the subscripts of the above equation). This means that the final set
of equations will have a single time variable, although we will develop these
equations from the two-time formalism. Various approaches have appeared
in the literature, 1,383,m but the approach we will follow is largely due to
Kuhn.3 "

For the investigation of fast laser excitation of semicondtfctors, and the
consequent coherent dynamics, we need to explicitly consider the coupling
between the carriers and the light field and to include these terms in the
system Hamiltonian. Here, we will take the equal time form of the Harnilto-
nian (replacing the field operators by simple second-quantized creation and
annihilation operators)

Ho = • c•ikck + E Ekl4 dk + Etawqb+bq
k k q

+ Z[Mk'F(+)4dk + Mj-F(-)d-kCk, (197)
k

where 4, d4k, b+ (ck, dk, bq) denote the creation (annihilation) operators
for the electrons, holes, and phonons, respectively, Ek = EG + 020c/2m.
and Ekh = h2 k2/2mk are the electron and hole energies (measured from the
valence band edge), Mk is the dipole matrix element connecting the hole
state with the electron state in optical absorption, and F(W) is (he Fourier
coefficient of the field at positive and negative frequency by

F+ = Fo(t)e-- It , F(-) = F(+)- , (198)

with wL the center frequency and Fo(t) the optical pulse shape. The basic
variables now used to describe the system response to the optical fields are
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the distributions of the electrons and holes

f =< c Ck >, f =< ddk >, (199)

and the interband polarization

Pk =< d-kCk >, Pi "-< 4ldk > •(200)

It will be noted that these are equal time Green's functions, and therefore
are actually mixed density matrices. It will further be noted that these four
functions are the four blocks of the super-Green's matrix (196). The Hamil-
tonian (197) does not have any interactions among the various excitations
(electrons, holes, and polarizations), and in the absence of these, the equa-
tions of motion become

dfke = df! k = (t 1''*tCiO'k
d dt=k = ;[Mk.Fo(t)e- 'p - M.-Fe (201)

-•" = 1[(E~k + E!-k)Pk + Mk'FO(t)e-i'L t (1 - Ke - fAN)] (202)

The main difference betweei. the coherent generation rate gk(t) and the
Fermi-golden rule of optical absorption is that in this approach the generation
of carriers is a two-step process. The light wave first creates a polarization
excitation in the semiconductor, and then this polarization is ionized into a
separate electron and hole. The connection with the previous section is made
by, for example,

G,(k,t,t' = i < d-k(t')Ck(t) >, (203)

and this strange state is achieved by noting that d.k creates a hole in the
state -k, which in effect annihilates an electron in the valence band elec-
tron state k. This change in notation is a result of a "rotation" of valence
electron states into hole quasi-particle states. (In reading the various liter-
ature on this topic, one should be aware of the vagaries of notation used.
The notation here is that of Kuhn3" while the alternative notation in terms
only of electron operators is used by e.g. Haug and co-workers.30) The ro-
tation and renormalization in terms of quasi-particles is often referred to as
a Bogoliubov transformation.

Dissipative processes can be added to (201) and (202) quite easily. The
interaction with phonons is directly added to the equations for the electron
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and hole distribution functions through self-energy terms as described in the
last section (the limitation to equal times simplifies the process immensely).
In fact, in this formulation, the electron and hole losses to the phonons can
almost be as easily treated by semi-classical scattering terms, and this is one
approach that has been used. 2 52 '•' 39 On the other hand, the inclusion of a
collision broadening of the appropriate spectral function requires the reten-
tion of the proper Green's functions expansions, and this has been pursued
by Haug and co-workers,3 among others. In Fig. 41, the energy distribu-
tion for the electrons is shown at different times for the Bloch equation model
treated by Kuhn and co-workers, and is compared to semi-classical results
(ignoring the polarization effects). The multiple peaks are phonon replicas
of the initial excitation. No carrier-carrier interactions are included in the
model. In Fig. 42, the average kinetic energy and the polarization are shown
for comparison. A 100 fs pulse width is assumed in these calculations.

Carrier-carrier interactions can be added to the process by including an
additional term in the Hamiltonian, which has the usual form (again, written
in a single time formulation)

V.1 1 d, ~
H -= - - "+qd~*..qdk dk--. qkiqdkck] , (204)

kk',q

where the three terms represent electron-electron, hole-hole, and electron-
hole interactions. In addition, the interband exchange term has also been
neglected (in which the electron and hole exchange momenta). Using the
Heisenberg equations of motion for the various density matrices, we find the
extra term for the time rate of change of the electron distribution function
to be

f=ý Vq[ C<Ckw-qCkCk+q > - < CLq4i.._qcLCk >
dt A k',q

+k+<c qd,_.dk, Ck > - < Ck4dkk,.qdk Ck-q >], (205)

and analogous equations are obtained for the hole distribution function and
the polarization. If Wick's theorem is used to factorize the products of the
four operators into separate distribution functions and polarizations, then
energy shifts are obtained corresponding to the Hartree and Hartree-Fock
(exchange) contributions. The polarization leads to a renormalization of
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the internal field that excites the carriers. There are, however, second-order
contributions, which are the higher-order correlation functions. 391,39 2 These
two-particle correlations, when treated in the lowest order, lead to terms (and
the need for equations of motion for these terms)

C+¢,_qC+kCk+q > +f(fi+qk,k, , < q+qd+_dkDck > -Pk+qPk'k,-k, .

(206)
In general, these lowest-order terms now lead to the lifetimes of the elec-
tron, hole, and polarization states.A5 However, it is not at all clear that the
higher-order terms can be ignored, and normally, the four-operator Green's
function must be determined from a self-consistent integral equation, often
called the Bethe-Salpeter equation. In fact, these terms are also important for
dynamic screening of the carrier interactions, and the basic electron-electron
term leads to what is also known as the polarization bubble (polarization
here of the electron gas separately). These higher-order terms are also im-
portant for weak localization and universal conductance fluctuations at low
temperatures.I4'1 s To date, few of these more complicated approaches have
been utilized in the femtosecond excitation world, and this area remains one
in which many fruitful advances are still to be made.

In keeping with the general treatment of the scattering as semi-classical,
it is also possible in numerical simulations of the femtosecond response to in-
clude the electron-electron interaction in real space as a molecular dynamics
potential, and this has led to some understanding of the effect of the inter-
acting gas on this time scale.- There have also been attempts to include the
finite duration of the collision that would arise by retaining the full two-time
Green's function approach to the femtosecond response~A7'

19. The Green-Kubo Formula

In Sec. 6 above, the Kubo formula was developed in linear response to
the applied fields, as represented in the vector potential. It was noted there
that the use of the Kubo formula was a significant change from the nor-
mal treatment of the dominant streaming terms of the Boltzmann equation,
or of the equivalent quantum transport equation, to the relaxation and/or
scattering terms. With the Kubo formula, one concentrates on the relaxation
processes through the correlation functions that describe the transport. Here,
we would like to close this loop once again and talk about how the real-time
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Green's functions fit into the Kubo formula, with the combination termed the
Green-Kubo formula. Now, if we note that the quantum mechanical current
is described by

eh a~(r)_ 8I!*() ,(207)= ar 9r

then it is not too difficult to develop the Green's function form of this quantity
to use in the Kubo formula (61). Using these ideas, it is possible to write
the equivalent Kubo formula in terms of the Green's function for the carrier
system as

--r~)> -ie2h lim. (V-7V)-. dt, a' dOssr.•lim (V, - V.,)
< ~r ) -4M2z rf--*rxt'-,t l+j

x [G,(r, s', t, t')G< (s, r', t., t') + G < (r, s', t, t',)G 8(s, r', t., t')IA(s, t.)
- (208)

where we carry out the indicated integrations and limits, and A(r, t) is the
vector potential

A(r,t) = - I dt'F(r, t'). (209)

It should be noted here that the displacement current has been ignored. Now,
this can be Fourier transformed to give the a.c. conductance

Se2h d3 k2  jdi' 2k "

k,2 h k
O r(k,w)=- - ,w) I jA (k2-, + -J)

S2m2W (2k)3 J 2

+ G<.(k2 + k IW')G<(k2 - k, W-

+ G< (k 2 + k 7 u)G, (k 2 _ kw, _w)] (210)

which, after some further changes of variables becomes

Ie2 _ d3k1 I did

m2k -r (2w) 3  2 2r

x [G,(ki,w')G<(ki - k,w'-w)
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+ G<(k,w')G7,(k1 - k,w'-w)] . (211)

It should be noted that this conductivity does not diverge as the frequency
tends to zero, due to the integral over the shifted frequency. This form has
certain advantages, but it has not been utilized very much with the real-time
nonequilibrium Green's functions.

It is now useful to rearrange the terms into those more normally found
in the equilibrium, and low temperature forms of the Green's functions. For
this, we make the ansatz

G<(k,w) = if(w)A(k,w) = -f(w)[G,(k,w) - Ga(k,w)]. (212)

This ansatz was shown to be correct for the low-field Green's function and
for the Airy transformed Green's functions in previous sections. It is also
correct in equilibrium for zero-temperature and thermal Green's functions,
but it is not in keeping with the normal high-field ansatze that have been
used in the Kadanoff-Baym and Keldysh representations.m Nevertheless, we
shall pursue this definition. Using this in (211) leads us to

m(kw) e 2h Ar). / ±-•-k-.k {G,(k,,w')G?(k -k,w' -w)f(w')

iýw(2~r) 3  2w

- G,(ki,w')G,(ki - k,w' - w)f(w' - w)

- G,.(ki,w')Ga(ki - k,w4 -w)[f(w') - f(w'-w)]} . (213)

The first two products of Green's functions will cancel one another. This can
be seen by changing the frequency variables as w" = w' - w, then using the
fact that a(k,w) = a*(k, -w), and G, = G. Thus, we are left just with the
last term in the curly brackets. For low frequencies, the distribution function
can be expanded about w', so that

o,(k,w) = ~ I~ d3 k1 I "k-,k,).k,-kw-w"~
rW2  (21r)3  2wc,

(214)
Finally, at low frequencies and for homogeneous material, we arrive at the
form

e2h d3k 12 'If (2
rn"- I I dw, k-k I G,2(k, (215)(. 2 ±k
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In the case of low temperatures, the derivative of the distribution function
is essentially a delta function at the Fermi energy. For this case, and with a
change to the velocities in the arguments, one arrives at

e2I k 1

Sv=.v -G,(k, WF)12 , (216)

where wF = EF/h. The sum over the mmcinentum couints the number of
states that contribute to the conductivity and results in the density at the
Fermi energy. In mesoscopic systems, where only a single transverse state
may contribute, the Landauer formula (4) (an additional factor of two arises
from a summation over spin states) is recovered when it is recognized that
IG,(k1 ,wF)12 is the transmission for the mode. Even if there is no transverse
variation, the integration over the longitudinal component of the wave vector
will produce the difference in the Fermi energies at the two ends of the
samples.

The approach (215) has been extensively utilized by the Purdue group to
model mesoscopic systems with the equivalent Landauer formula for nonequi-
librium Green's functions. For mesoscopic waveguides in the linear response
regime, even with dissipation present, they have shown that this form can
be extended to the use of a Wigner distribution, which then can be used to
define a local electrochemical potential, but that sensible results are obtained
when these potentials are defined in an average sense over regions the size
of a de Broglie wavelengthYs They have also investigated the simulation of
dissipative scatterers by the use of voltage probes, but find that the formu-
lation is robust enough to introduce the scatterers directly into the Green's
function.,3 * This latter has led to a general mulhi-probe formula4 "° and to
a.c. response.40 1 In Fig. 43, the solutions for the electrochemical potential
and current density are shown for a quantum waveguide with a stub sidearm.
One important result of this calculation is the large potential drops at the
cathode and anode contacts apparent in the structure.

The role of surface scattering in mesoscopic quantum wavegufides has
also been investigated through the use of the Kubo formulation.4 "2 In this
latter work, it is found that the presence of edge roughness can open gaps
in the energy spectrum of the carriers for a one-dimensional wire, but this
does not occur in higher dimensions. The Green's function approach has
also been utilized to study magnetotransport in these quasi-one dimensional
wires.403,404
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Usually, the Kubo formula and the Green's functions developed above
have been limited to the nearly (or exactly) homogeneous semiconductor.
Jauho has extended this approach to the strongly inhomogeneous situa-
tion by the introduction of a new ansatz.4°s Here, the Green's function
G<(k.,, Az, w, R) is expanded as a product of the spectral density and a
quasi-distribution, the latter of which is composed of a mini-(Wigner)distribution
for each transverse mode present at R and the wave functions propagating
in the z-direction as

G<(kAz, w,R) = , ,( + " AZ

x fWE,(k E, R)A(k•, E\, R). (217)

Here, the inhomogeneous potential along a mesoscopic device may be treated
non-perturbatively. Others have looked at other generalizations of (2 15 ), 5
and at the time-dependent transport in nonlinear structures.4

(, Finally, there
has been an effort to extend the general approach to obtain e.g. 'an energy
balance equation along the line of the treatment of Secs. 7 and 8.41

The formula (216) has found significant usage at low temperatures to
model quantum wires with what are known as real-space lattice Green's func-
tions, or recursive Green's functions.'",'3" These were studied initially in con-
nection with universal conductance fluctuationss1 and have since been used
extensively to study general conductance in multi-terminal mesoscopic de-
vices 85,4-10412 Some formal considerations on extending an arbitrary Hamil-
tonian result to more general Hamiltonians has also been presented.41 3 It
has also been extended to the consideration of Coulomb interactions among
the electrons on the lattice sites, 41 4 and to self-consistent fields due to gated
potentials.

415

The general approach to the site-representation evaluation of the Kubo
formula begins with writing a new Hamiltonian for the total "energy" in the
system. This may be done as

H=E j .jjt ~cjkk + EI{V.[Cj'kCI...,k + d...,kCjkI + VyC~,kCj A;. + k-l.CIjklj
j~k j,k

(218)
This leads to an equivalent expression for the current in the x-direction as

.2irea
= -h t- j,k C - - C3. 1kCjI (219)
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and the conductivity is then, from the Kubo formula

{ £- V e 
-+cI.. 

ikCikl}.

X ICj1~kIC1,..1* - + (220)

Then, this may be simplified by recognizing that the energy functions are
the Green's functions, and

4V2 2 L 2
hV Tr {G'k'(j' - 1,j)G',(j - 1,j') + Gk,(j',j)G'k,(j - 1,j' - 1)(r= hV

-Ckk(j' - 1,j)G',k.(j - 1,j') --Gkk(,j - 1)GZok(j - 1,j'-- )} (221)

In the above, the quantities V., L., V and Ejk are the interaction energy
between neighboring sites, the length of the "lattice" in the z-direction, the
"volume" of the simulation crystal, and the site energy, respectively. Usually,
the interaction energy is held fixed, at least for one direction, and the site
energy incorporates the disorder (due to impurity scattering, for example)
by allowing this quantity to vary over the range -W/2 to W/2 with a uni-
form distribution-the so-called Anderson model. The trace runs over the
subscripts k and k' in the y-direction. Here, we will use the notation that
G(j) is a column matrix whose elements are Gk(j).

It is necessary to build up the overall Green's function, and this is usually
a self-consistent process. Rather than follow this usual case, an approxima-
tion is made by propagating metallic Green's functions in from th2 boundary
as

GL(j) = {GoJ(j) + I V1 2 GL(j - l)}, (222)
GR(j) = {Gfol(j) + IV512 GR(j + 1)}, (223)

Go,k(j) = E- E3& + i (224)

The Green's functions are propagated separately from the left and the right
directions, and then the two versions are added together to give the total
Green's function. Once this is done, the conductivity can be computed as a
function of the energy E.-
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Variations of this general approach have been used by Sols et al. to study
a stub-tuned waveguide "transistor."416 In Fig. 44, the general structure of
the device, and the transmission coefficient for a range of parameters, are
shown. The approach has also been used to study the resonant-tunneling
diode in the presence of electron-phonon coupling. 119-41' Fig. 45 shows the
general structure of the device and the tunneling coefficient as a function
of energy in the presence of the dissipative interaction. The density in the
quantum well is illustrated in Fig. 46 as a function of the transmission
coefficient, while the build-up time is plotted as a function of the well width
in Fig. 47.

20. The Resonant-Tunneling Diode

Section 4 above discussed the variety of devices that have become the
test vehicles for examining the role of quantum transport. Foremost among
these is the resonant tunneling diode. A variation of this, the quantum dot,
in which a resonant section of an electron waveguide is couj, ed to two other
(input/output) waveguides, was also discussed. It turns o1' that these are
essentially the only devices in which any extensive study M quantum trans-
port with the Green's functions has been made. One appi v4h in fact uses
a single particle Green's function, and the poles of this latu function, to
identify the resonant states within the resonant-tunneling diode.4 18 Using
the Kubo formula, it is conceptual!y easy to determine the current throtgh
the resonant-tunneling diode, although the introduction of a self-consistent
potential distribution complicates this task. A quasi-analytic theory to de-
termining the self-consistent population of the resonant state was introduced
by Lu and Horing.4"9 Here, it was found that there could be a suppression
of the tunneling current, due to the exclusion principle, when the resonant
state was significantly occupied. On the other hand, Davies et aL42- have
demonstrated that the semi-classical rate equation picture holds both in the
coherent limit, in which transport through the double barrier is described in
a simple wave mechanics picture, and in the limit where scattering in the
resonant state makes a classical "sequential tunneling" picture more appro-
priate. In the case where the electrons are incident with an energy greater
than that of the resonant state, elastic scattering can "focus" the electrons
into final states whose final states for motion perpendicular to the barrier
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planes closely matches the energy of the resonant state.421 This implies that
the lateral momentum contributions are randomized in such a manner that
the longitudinal momentum closely matches the energy of the resonant level.

The role of inelastic scattering in the resonant tunneling diode has been
examined by a variety of authors within the Green's function formalism. The
earliest studies focused upon the tunneling of carriers which were assisted by
an infrared photon beam, with the result that the photon-induced resonant
tunneling could be switched and controlled by the change of the applied
bias.42 Later work showed that the role of the inelastic processes depended
upon the transparency of the barriers, particularly in thicker barriers where
the charge in the well would be larger.4• In Fig. 48, the density in the
resonant-tunneling diode is shown as a plot of the distribution function versus
both energy and position. Here, it is clear that a phonon emission process is
underway during the tunneling of the particles through the structure. The
possible role of multiple scattering (higher-order interactions) has also been
studied recently.424

The tunneling time for carriers through the double-barrier structure has
been of some interest in connection with the debate over the tunneling time
for particles moving through a barrier. One approach is to calculate the
ohmic conductance through the structure as a function of the frequency of
the bias potential 4 s From these studies, it is found that the basic a.c. con-
ductance rolls off at a frequency corresponding to the width of the resonance
level AE, divided by Planck's constant, or

AE. = -(225)

However, these latter authors find that there is a peak in the conductance
if the barriers are unequal, which in fact is the usual case. Other studies
indicate that lateral confinement also affects the a.c. conductance,4• as does
the presence of charge in the well,427 where the absence of charge in the well
basically slows the transient switching due to the need to charge the well and
its intermediate state. A more complete theory is one in which it is necessary
to discuss the differences between transits through the well, charging of the
well, and tunneling processes. 428 From this latter, it is demonstrated that
there are two characteristic time scales of importance-that of the steady-
state current characteristic time (which appears in the conductance) and
that of the charge in the well Qw. These two define the dwell time and the
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transit time, where the latter is defined by Qw/j&. The transit time is an
intrinsically static quantity, while the response time (similar to the roll-off
frequency discussed above) is important for a.c. properties. The response
time is found to be dominated by the escape rates out of the quantum well
for the stored charge in the well. Carrier-carrier scattering does not affect
these conclusions to any great extent.42

As pointed out in the Introduction, the quantum dot is a mesoscopic
equivalent of the resonant tunneling diode, except that it is usually studied
in the few electron regime. The mesoscopic quantum dot has been studied in
analogy to that of the diode. Here, in an approach that treats the charging
of the dot region through a Hubbard-like term in the Hamiltonian, it is found
that charging of the dot region strongly affects the overall transnission. 43 0 Of

course, the few-electron quantum dot is subject to the normal single-electron
charging with conductance peaks as electrons charge and discharge the dot
region.43 1,43 The overall behavior has recently been reviewed 43 and will not
be dealt with to any great extent here. The use of Green's functions has,
however, identified the importance of carrier-carrier interactions,43 and the
nonlinearities introduced by the charge in the well.4

The use of the real-time Green's functions has mainly been limited in
practice to nearly homogeneous high field structures and to linear response
in inhomogeneous structures. Nevertheless, it has the capability to provide
the most in depth look at the actual physics of nanodevices, and its use is
still open to considerable study.
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Captions

January 23, 1994

Figure 1 The Wigner di.Aribution showing the density variation adjacent to an
infinitely high potential in the space x < 0. The oscillations at higher momentum
value arise from interference of the waves peaking closer to the interface.

Figure 2 A schematic depiction of the embedding of a device in its surround-
ings: boundaries, contacts, etc.

Figure 9 The potential distribution for a double-barrier resonant-tunneling
diode. In (a), the potential is shown in equilibrium. The full states (shaded)
on either sides of the barriers are coupled only by tunneling through the entire
structure. Under bias, however (b), the resonant level is aligned with the siates
in the emitter, allowing them to tunnel through with a probability approaching
unity.

Figure 4 The gate electrodes deplete the quasi-two-dimensional electron gas
under them to create a quantum dot region in the inclosed area. The size of this
area can be adjusted by depleting additional states with the "tuning" electrode.
This adjusts the resonances and transmission through the structure.

Figure 5 A quantum waveguide equivalent of the DBRTD and quantum dot.
(a) The wide region of the waveguide provides mode propagation at a lower energy
than the thinner waveguides. This provides the equivalent of the resonant energy
in the DBRTD and the dot levels in the quantum dot. (b) Computation of the
current transmission through the structure leads to a negative differential conduc-
tance just as in the DBRTD. In this calculation, W 3 = Ws = 25nm, W4 = 45nm,
and W = V72 = 500=nm. The length of the center section is 25nm and that of the
two barrier sections is 20 nm. In addition, a depletion in from the edge is assumed
under bias, with 61 = 0,62 = 0.5, 63 = 1.0, and 64 =1.5 nm. The Fermi energy
is 5 mV, and the temperature is assumed to be 0 K. [After Goodnick et aL,IEEE
Electron Dev. Letters 12, 2 (1991), by permission.]



Figure 6 The density matrix, in equilibrium, for a DBRTD. Charge in the
quantum well is indicated by the small peak centered in the gap.

Figure 7 The Wigner distribution function, in equilibrium, for a DBRTD.
Again, charge in the quantum well is indicated by the spread in the small peak
centered in the gap.

Figure 8 The path of integration for real-time Green's functions which are out
of equilibrium. The tail extending downward connects to the thermal equilibrium
Green's functions, where appropriate.

Figure 9 The quantum potential for the hyperbolic tangent potential cited in
the text. The solution area of the overall device is 200 nm.

Figure 10 The quantum potential for a MESFET near pinchoff. The gate
length is 24 nm, and the active layer is 39 nm thick, and doped to 1018 cm- 3.

Figure 11 The carrier density across the channel, under the gate, in a direction
normal to the gate for a 24 nm GaAIAs/GaAs HEMT. The dashed curve is the
case in which the quantum potential is set to zero.

Figure 12 The density matrix for a homogeneous system, in which the density
as a function of the off-diagonal distance, or correlation distance, for GaAs with
an electron density of 101 cmr-3 .

Figure 13 (a) The charge density and potential axe shown for a abrupt (non-
self-consistent) potential step. The parameters are for GaAs at 0 K and a doping
level of 1018 cm- 3 in the region of low potential, and an order of magnitude lower
in the region of high potential. (b) The density matrix for this situation.

Figure 14 (a) The charge density and self-consistent potential for the same
situation as in Fig. 13. (b) The density matrix.

Figure 15 (a) The density profiles for a wide and a narrow barrier. The doping
variations are the same as in Figs. 13 and 14, which provide a barrier height of
42.7 meV. (b) The density matrix for the case of the wide barrier.

Figure 16 The quantum potential (solid curve) and barrier potential (dashed
curve) for the narrow barrier of Fig. 15.

Figure 17(a) The charge density, self-consistent potential energy, and quantum
potential for a heterojunction between GaAlAs and GaAs. The composition of
the former material is taken to give a 0.3eV conduction band offset: (b) The
density matrix for the charge in this heterojunction. The GaAlAs is the region
z > lOOnm.

Figure 18 A double-barrier structure with 5nm barriers, 0.3eV high, and a
5nm well is solved by the denstiy matrix technique. (a) The doping profile and
the self-consistently determined density in the structure. (b) The self-consistently
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determined potential and the quantum potential for this structure. The peak
of the quantum potential in the well defines the quasi-bound state energy, as
discussed in the text.

Figure 19 The double-barrier structure of Fig. 18 is immersed in a wider (40nm
wide) quantum well with depth of 0.15eV. In (a), the doping and self-consistently
determined density are shown, while in (b), the self-consistent potential and the
quantum potential are plotted.

Figure 20 The real (a) and imaginary (b) parts of the density matrix for a
uniform GaAs structure in a constant electric field of 500 V/cm.

Figure 21 A central 5 nm region is assumed to have different scattering prop-
erties from the bulk. The two cases consider i) a scattering time of 0.1 ps in the
bulk and 0.01 ps in the central region, and ii) increase of the scattering time to
1 ps in the bulk (with 0.01 ps in the central region). In (a), the potential and
quasi-Fermi levels are plotted, while in (b), the density is plotted for these two
conditions.

Figure 22 A central region of 50 nm is assumed to have a lower scattering rate
(1 ps versus 0.1 ps in the bulk). In (a), the potential and quasi-Fermi level are
plotted, while (b) illustrates the density variation.

Figure 28 The potential (a) and density variation (b) across a single tunneling
barrier, embedded in a central lightly-doped region (the parameters are discussed
in the text). The parameter for the various curves is the applied bias.

Figure 24 The variation in the quasi-Fermi level for the structure and biases
of Fig. 23.

Figure 25 The distribution of charge and the potential variation in equilibrium
for a single-barrier structure (details are discussed in the text).

Figure 26 A comparison of the fi inferred from capacitance voltage and the
actual n(x) determined from a self-consistent solution for the density matrix. The
inset shows a plot of i 2/2L2,6 vs. applied voltage.

Figure 27 It may be seen from this construction that the Wigner function has
support (and is non-vanishing) in regions in which the wave functions vanish.

Figure 28 Gaussian wave packet that is interacting with resonant tunneling
potential barriers. The barriers are indictated by the dark bands. (a)'The incident
wave packet, moving from the left toward the right, is just beginning to interact
with the barriers. (b) The Gaussian wave packet during reflection. The incident
and reflected components axe just forming, as is the correlation around k = 0.
Part of the packet is tunneling through the barriers. (c) The Gaussian packet
after tunneling is nearly completed and most of the packet is reflected. The
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tunneling packet isalso well formed.
Figure 29 The I - V curve, solved self-consistently, for the DBRTD. The po-

tential is increased to a maximum value of 0.5 V, and then decreased. A hysteresis
is evident in the curves and arises from charging and discharging of the quantum
well.

Figure 30 The potential distribution for the DBRTD for an applied bias of 0.22
V, which is near the peak of the I - V curve in Fig. 33. Much of the po: .mtial
is dropped across a cathode adjacent depletion layer, which leads to a contact
resistance and quantization in the resulting triangular potential well.

Figure 31 The potential distribution for the DBRTD both with and without
the spacer layers adjacent to the barriers, in the absence of any applied bias. The
spacer layers are lightly-doped regions to create resistance matching between the
active device and the contacts.

Figure 32 The potential distribution for the DBRTD both with and without
the spacer layers adjacent to the barriers, with an applied bias of 0.4 V, a value
near the valley of the I - V curve. Clearly, the spacer layers have provided better
matching to the boundaries, so that the depletion layer adjacent to the cathode
is eliminated.

Figure 33 The I - V curve, solved self-consistently, for the DBRTD with spacer
layers adjacent to the barriers. The potential is increased to a maxiimum value of
0.5 V, and then decreased. A hysteresis is still evident in the curves and arises
from charging and discharging of the quantum well. The peak-to-valley ratio is
also enhanced by the presence of the spacer layers.

Figure 34 The current transient that results from switching the DBRTD from
the peak current to the valley current, as indicated in the inset. The large oscilla-
tions are thought to be a coupled response due to the charge plasma oscillations
and the RC behavior of the barrier region.

Figure 35 The Fourier transform of the large-signal switching behavior, for
three different values of the mobility in the bulk regions. (a) The magnitude of
the conductance in the negative-differential conductance regime. (b) The real
part of the conductance, which is negative for frequencies below 1.5 THz. (c) The
imaginary part of the conductance, which is inductive below 2 THz.

Figure 36 The potential (solid curves) and density (dashed curves) for a self-
consistent Wigner function solution to the DBRTD. (a) No dissipation is included.
The depletion in the cathode-adjacent layer is needed to match the cathode in-
jection conditions, and this result would also be obtained from directly solving
Schr6dinger's equation. (b) The solutions when the energy-dependent LO and
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acoustic phonon interactions are included. The depletion has almost been wiped
out by the enhanced dissipation in the structure. (c) The solutions when contact
resistance is added to the inelastic processes, with a drifted Fermi-Dirac distribu-
tion assumed in the boundaries. [After W. R. Frensley, Sol.-State Electron. 32,
1235 (1989).]

Figure 37 The Wigner distribution for a gated quantum wire. (a) A voltage
of -20 mV has been applied to the gate, which depletes the wire and creates a
(tunneling) barrier in the wire. (b) A voltage of 20 mV, which enhances the
conductance and creates a filled potential well in the wire, is applied to the wire.
[After H. Tsuchiya et al, Jpn. J. Appl. Phys. 30, 3853 (1991).]

Figure 38 The real (a) and imaginary (b) parts of the retarded self-energy
for the Airy function model in high electric fields. The reduced units axe =

(hw - eFs)/0 1/ 3, e = (eF/L)2I 3.
Figure 39 The spectral function, A(k, s,w) = -2Im{G,(k, s,w)}. The units

and scales here are the same as in Fig. 42.
Figure 40 The distribution function (or more properly, the local density of

particles) as a function of the electron energy. Parameters appropriate to Si axe
used. [After R. Bertoncini and A. P. Jauho, Phys. Rev. Lett. 68, 2826 (1992).]

Figure 41 Energy distributions of electrons at different times during and after
the pulse (a) for the full Bloch equation model and (b) for the semi-classical
Boltzmann equation model. [After T. Kuhn et al., Proc. NATO ARWon Coherent
Optical Interactions in Semiconductors, Cambridge, 1993.]

Figure 42 The kinetic energies (a) and polarizations (b) as a function of time
for a 100 fs laser pulse. [After T. Kuhn et al, Proc. NATO ARW on Coherent
Optical Interactions in Semiconductors, Cambridge, 1993.]

Figure 43 The solutions for the chemical potential in a quantum wire with a
stub waveguide attached. (a) The chemical potential, and (b) the current density
as a function of postion in the guide. Notice in particular the extensive fraction
of the total potential drop which occurs at the contact regions. [After M. J.
McLennan, Y. Lee, R- Lake, G. Neofotistos, and S. Datta, in Computational
Electronics, Ed. by U. Ravaioli (Kluwer, Norwall, MA, 1991) 247.]

Figure 44 (a) Schematic view of the three-terminal structure used in the calcu-
lations of the waveguide transmission. (b) The squared modulus of the transmis-
sion coefficient for the first mode, as a function of the effective length of the stub
L* and of the electron energy E (L1 = L3 =10 nm). [After F. Sols, M. Macucci,
U. Ravaioli, and K. Hess, Appl. Phys. Lett. 54, 350 (1989).]

Figure 45 The transmission as a function of energy (a) and the barrier structure
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(b) for a double-barrier AIGaAs/GaAs structure. The transmission corresponds
to 5 nm barriers (40% Al concentration) and a 6 nm well. [After J. A. Stovneng,
E. H. Hauge, P. Lipavsky, and V. Spi&a, Phys. Rev. B 44, 13595 (1991).)

Figure 46 The time evolution of the particle density in the quantum well of
a double barrier. Here, a hopping model is used to simulate the transport. The
long- and short-dashed curves are the result of averaging over an energy window
around the resonant energy level of varying width, where the range is defined by
the reduce wave vector rk = 1.2 x 10-3(2w/a), and a is the lattice constant. [After
J. A. Stovneng and E. H. Hauge, Phys. Rev. B 44, 13582 (1991).]

Figure 47 The build-up time for charge in the quantum well as a function of
the initial wave packet width Ax. The amplitude of the barrier is taken to be four
times the hopping energy between sites. [After J. A. Stovneng and E. H. Hauge,
Phys. Rev. B 44, 13582 (1991).]

Figure 48 The Green's function for a double-barrier tunneling diode with in-
elastic scattering present. The plot illustrates the "current" density as a function
of both position and energy. There is a clear transition of energy within the bar-
rier indicating an inelastic tunneling process. [After R. Lake and S. Datta, in
NASCODE VII, Ed. by J. J. H. Miller (Front-Range Publ., Boulder, CO, 1991).]
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